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Abstract

In this work, we investigate an interpretable, modular approach to multi-hop question answering

by adapting a popular visual question answering architecture, the MAC cell, to the task of multi-hop

reading comprehension. In multi-hop reading comprehension, a model must answer questions by col-

lating facts from multiple text sources. Our augmented MAC cell design outperforms existing modular

approaches to multi-hop QA with less supervision and provides interpretable insights into its reasoning

process. We then investigate integrating our cell with the highly popular BERT model and design a

novel model which iteratively reads and retrieves documents in an interpretable fashion, allowing scal-

able and interpretable multi-hop question answering. Alongside this, we investigate the behaviour of

generic BERT-based models on multi-hop QA and show that several existing approaches to multi-hop

QA fail to significantly beat a naive BERT baseline. Our work shows the promise of MAC networks

for multi-hop reasoning and outlines future paths for both MAC networks and multi-hop reasoning as a

whole.
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CHAPTER 1

Introduction

1.1 Question Answering and Reading Comprehension

One of the oldest tasks in the field of natural language processing (NLP) is that of question answering

(QA), dating back to Alan Turing and the Turing test (Turing, 1950). In QA, systems are tasked with

generating (usually natural language) responses to natural language questions. While the scope of po-

tential questions is large, traditionally QA research focuses on answering ‘factoid questions’ - questions

that can be answered with a single fact from a (usually short) snippet of text. Such systems have a wide

variety of use-cases, from aiding internet search (Hazen, 2019; Nayak, 2019), to winning quiz shows

(Gustin, 2017; Markoff, 2011; Ferrucci et al., 2010), to providing answers to medical questions (Möller

et al., 2020). Despite the success of these recent QA systems, there is still much space for improvement

in various directions, with current models struggling on particularly complex or large-scale QA tasks

(Dua et al., 2019; Yang et al., 2018). As such, QA is a highly interesting area of research with obvious

real-world applications and many potential directions for future research.

In this work, we focus on a subset of QA called multi-hop machine reading comprehension. In machine

reading comprehension (MRC), a model is presented with passages from a (or multiple) text(s) and is

then asked questions that test its understanding of the text, similar to the reading comprehension exams

found in primary and secondary education. These questions can range from asking for simple facts

found in the text (e.g. ‘Who is the CEO of Apple?’) to more complex questions involving different

types of reasoning (e.g. ‘Who died first: Ferdinand II or Charles V?’ or ‘How many empires attacked

Guadalajara?’). Questions that require drawing information from multiple input texts are called multi-

hop questions. These questions have received much study recently, with the rise of multi-hop specific

datasets (Yang et al., 2018; Welbl et al., 2018) and models tackling these datasets (Ding et al., 2019;

Fang et al., 2020; De Cao et al., 2019). Existing work on these questions largely focuses on either

(a) constructing complex graphs for information passing between various condensed representations of

1
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portions of the input text, or (b) improving the ability of the system to narrow down the input text to just

the relevant facts needed for answering. In contrast, we investigate adapting an attention-based model

to this task, which does not rely on graphs while still containing a strong inductive bias for multi-hop

QA. In addition, we investigate the importance of narrowing down the input text to existing models and

present a new model for doing so in a scalable and interpretable manner.

1.2 Contributions

We tackle the task of multi-hop machine reading comprehension by adapting a novel network design, the

MAC cell (Hudson and Manning, 2018) to the task of multi-hop reading comprehension. Our adapted

design provides improvements over existing modular neural network approaches to a popular multi-

hop QA dataset. We provide a detailed analysis of our model, showing it contains a strong inductive

bias for multi-hop reasoning, and investigate how well the interpretable qualities of MAC cells are

maintained when operating over text instead of over images (for which they were originally designed).

We then augment our model with the popular BERT model (Devlin et al., 2019) and explore how this

integration changes the impact of the MAC cells. While a naive application of the MAC cell provides

little benefit over a baseline BERT model, we show that certain elements of MAC cells provide clear

utility for document selection in multi-hop QA. Finally, we show that competitive performance on the

popular multi-hop dataset HotpotQA can be achieved without performing cross-document reasoning,

highlighting the weaknesses of the HotpotQA dataset and providing insight into the answering strategies

used by current state-of-the-art multi-hop QA models.

In summary, we make 4 key contributions:

(1) We adapt the MAC network to machine reading comprehension, bringing a popular image-

based model to a text-based task. We provide a detailed analysis of the behaviour of this novel

model design.

(2) We show that the adapted MAC network provides stronger or competitive performance com-

pared to existing modular approaches, highlighting the effectiveness of the augmented MAC

cell for multi-hop reasoning.

(3) We show that cross-document reasoning is largely not required for state-of-the-art performance

on the popular multi-hop QA dataset HotpotQA and that most performance gains come from

the relatively under-investigated document selection step.
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(4) We design a multi-hop model that achieves competitive performance on HotpotQA by focusing

on the document selection step. This model achieves performance on par with existing models

with dedicated reader components without using such a component by concurrently selecting

documents while answering a given question.

Note that we have proposed two different, but related, models above:

(1) A model that serves as a basic adaption of the MAC cell to the task of multi-hop reasoning.

As this model utilises GloVe-based embeddings to represent text, we henceforth refer to this

as our GloVe-based model.

(2) A model that integrates the BERT model for representing input text. Integrating BERT is

essential for state-of-the-art performance, but requires further modifications to our design. We

henceforth refer to this as our BERT-based model.

These two models provide two different contributions: (1) highlights the promise of MAC cells when

applied text-based QA, and (2) highlights how MAC-cell based methods can be best integrated with

BERT-style models to make use of both the strengths of BERT and MAC cells.

1.3 Structure

In this introduction, we have outlined the task of multi-hop question answering and summarised the core

contributions of this work. We now lay out the structure of the rest of the work:

In chapter 2, we provide a brief history of QA and reading comprehension before then covering recent

popular neural approaches to reading comprehension-style QA. We then cover the state-of-the-art in

multi-hop QA and conclude by covering other work adapting MAC cells to text-based reasoning tasks.

We provide summary tables for all models discussed.

In chapter 3, we provide a detailed analysis of the datasets used for evaluation and describe the baseline

models we compare our models against. We also set out the core methods used to evaluate our models.

In chapter 4, we describe the design of model (1) above in detail.
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In chapter 5 we present a detailed qualitative and quantitative analysis, including hyperparameter tun-

ing, ablations, performance evaluation, and interpretability analysis. We then examine a naive integra-

tion of BERT with model (1) and show that current approaches to HotpotQA rely heavily on a little-

examined document selection step.

In chapter 6 we describe the design of model (2) above, motivated by our findings in the previous

chapter.

In chapter 7, we present an analysis of model (2)’s performance similar to analysis performed in chapter

5.

Finally, in chapter 8 we discuss future directions for the area of multi-hop reading comprehension and

our work, before then concluding by summarising the results and contributions of this work.



CHAPTER 2

Literature Review

2.1 Introduction

In this section, we provide a brief history of question answering in NLP and then perform a thorough

review of recent progress made in the area of multi-hop reading comprehension. We first examine

highly-popular most popular reading comprehension models: BiDAF (Seo et al., 2017), DrQA (Chen

et al., 2017), and BERT (Devlin et al., 2019). These models have been highly influential and aspects

of their designs are still largely used in both QA and the field of NLP as a whole. We then examine

current trends in the state-of-the-art in multi-hop reasoning, focusing on progress made on HotpotQA

(Yang et al., 2018), a highly popular multi-hop QA dataset. Finally, we review other attempts to extend

MAC-related networks to textual reasoning.

2.2 A Brief History of QA

Early systems for QA, such as BASEBALL (Green et al., 1961) and LUNAR (Woods, 1977) focused

on a parsing-based approach to QA, mapping natural language sentences to structured database queries,

and were only capable of answering questions about single domains: BASEBALL answered questions

about baseball players, while LUNAR answered questions about lunar rocks. While most initial work on

QA followed this parsing-based approach, there was a small amount of work done on building systems

that could reason over text, an early example being the QUALM system (Lehnert, 1977). Such work

took an information retrieval approach to QA, where the system itself learnt to retrieve facts directly

from an underlying text, rather than from a structured knowledge base. This work eventually led to

the development of the first machine reading comprehension task (Hirschman et al., 1999), which drew

upon reading comprehension questions from primary school exams for its data. Initial approaches to

this task before 2015 largely relied on fragile and labour-intensive systems utilising hand-crafted rules

5



2.2 A BRIEF HISTORY OF QA 6

(Riloff and Thelen, 2000; Ng et al., 2000) and/or simple word-based heuristics (Hirschman et al., 1999;

Charniak et al., 2000). Even with these hand-crafted approaches, early work struggled even on basic

reading comprehension tests. As such, reading comprehension was under-examined for some time due

to its seeming immense difficulty as a task.

However, around 2013-2015 the amount of research into the reading comprehension task exploded due to

two factors: firstly, the construction of large reading comprehension datasets, such as MCTest (Richard-

son et al., 2013), SQuAD (Rajpurkar et al., 2016), and CNN/Daily Mail (Hermann et al., 2015), and

secondly, the rise of neural network-based approaches to reading comprehension (Hermann et al., 2015;

Weston et al., 2015; Yin et al., 2016; Kadlec et al., 2016; Cui et al., 2016). These datasets formulated

the reading comprehension task as either a location problem, where the model had to locate the correct

answer to a question within some input text, or as a multiple-choice problem, where the model had to

select the correct answer from a list given a question and input text. Neural approaches proved incredibly

effective for these tasks, which themselves served as excellent tests for the ‘general’ reasoning ability

of these models. Successful neural approaches to these newer datasets largely relied on attention-based

mechanisms, with notable examples being the bi-attention flow model (Seo et al., 2017) and BERT (De-

vlin et al., 2019), with recent approaches achieving above-human performance (Devlin et al., 2019; Lan

et al., 2020). We cover some of these approaches below. This large success has inspired a more recent

wave of newer reading comprehension tasks which further increase the difficulty of the task either by

requiring question answering over longer passages of text (Kwiatkowski et al., 2019), or by requiring

varied and difficult forms of reasoning (Khashabi et al., 2018; Dua et al., 2019), or both (Yang et al.,

2018; Welbl et al., 2018).

One particular method for increasing the difficulty of reading comprehension has been the incorporation

of multi-hop questions - questions which require examining facts from multiple documents in order

to answer. Such questions simultaneously require reasoning over longer contexts than prior reading

comprehension tasks and require more complex reasoning due to the requirement of multiple facts to

locate the answer. Recent models that tackle these more difficult reading comprehension tasks often

use several shared core features: a retriever model to winnow down the passages of text to contain

only sentences relevant to the question (Asai et al., 2020), a contextual word embedding model for

constructing information-rich word representations (e.g. BERT (Devlin et al., 2019)), and an output

layer or module for making the final answer prediction. We cover several recent approaches to multi-

hop QA below.
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2.3 Attention-based Machine Reading Comprehension

As mentioned above, early successful neural approaches to reading comprehension largely focused on

the use of attention, with a recurrent neural network used to process the text and an attention mechanism

used to determine the most relevant parts of the input text to the question. As attention mechanisms to

this day remain a core part of most NLP models, we now provide a brief description of what ‘attention’

means in the context of NLP and reading comprehension.

Intuitively, attention mechanisms calculate what words or items in a sequence are most ‘important’ to a

given word or item, and use these to construct a context vector summarising the sequence weighting the

more ‘important’ items in the sequence more heavily. In its most simple form, we have some sequence

u and item h we wish to calculate attention against (often u is a sequence of word embeddings, and h a

single embedding). We first calculate a score between each item of u and h:

u = [u1, u2, ..., ut] (2.1)

Ai = score(ui, h), i = 1...t (2.2)

This score function can take many forms, with the currently most popular function being the dot product

(Vaswani et al., 2017). After this, we convert the scores to probabilities using the softmax function and

use the probabilities to construct a summary vector of u:

A′ = softmax(A) (2.3)

us =
i=t∑
i=1

A′iui (2.4)

This summary vector is simply a weighted sum of items in u, and so holds more information from the

items in u deemed most important to h. This summary vector can then be used in a variety of ways

depending on the task of a given model. In addition, multiple attention mechanisms are often combined

in various ways, including bi-attention, where attention summary vectors are produced for two sequences

at once (Seo et al., 2017), and multi-head attention, where multiple attention mechanisms are applied in

parallel on the same underlying data (Vaswani et al., 2017).
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2.4 Neural Approaches to QA

We now go over three highly-influential neural-based approaches to reading comprehension. Each ap-

proach introduces ideas and elements that are core parts of many state-of-the-art reading comprehension

models. All approaches take in a question and input document(s) and find the answer to the question

within the text of the input document(s).

2.4.1 Bi-directional Attention Flow Model

The bi-directional attention flow model (BiDAF) (Seo et al., 2017) is a highly influential reading com-

prehension model, introducing the highly useful bi-attention layer. This model first takes in a question

and context (i.e. the input text) in text form, and turns them into vectors using both GloVe word embed-

dings1 (Pennington et al., 2014) and learnt character embeddings. These embeddings are combined using

a bidirectional LSTM layer2 (Hochreiter and Schmidhuber, 1997), constructing contextually-aware vec-

tor representations of each token in the context and question, allowing the model to implicitly model

the syntax and semantics present in the underlying text. A novel attention mechanism, the attention

flow layer (or bi-attention layer) is then applied, which calculates interactions between the question and

context3. These interactions are passed through another set of LSTM layers (the ‘modelling layer’), and

then a final set of LSTM layers are used to predict the location of the answer in the context. A diagram

of this architecture is given in figure 2.1.

The proposed bi-attention layer is now a widely-used component in QA models (Qiu et al., 2019; Fang

et al., 2020), and allowed the BiDAF model to achieve state-of-the-art results on a set of QA datasets,

including the popular SQuAD dataset (Rajpurkar et al., 2016), at its time of publishing. However, its

reliance on LSTM layers limits its ability to model long-distance dependencies, and the model struggles

with multi-step reasoning due as it only calculates interactions between the question and context once

in its bi-attention layer (Jiang and Bansal, 2019a). Furthermore, the bi-attention mechanism has limited

interpretability, especially when applied to large inputs, as it requires visualising a value for every word-

pair between the question and context.

1When we refer to ‘X embeddings’ here and throughout this work, we mean dense vector representations of X, often learnt
through training or specific embedding techniques such as GloVe.

2A popular recurrent neural network, see chapter 4 for more details.
3We provide more details on the bi-attention layer in chapter 4
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FIGURE 2.1. Diagram of BiDAF model from Seo et al. (2017). Query2Context and
Context2Query represent the attention mechanisms between the context and query.

2.4.2 DrQA

Another popular attention-based model is DrQA (Chen et al., 2017), which tackles the task of open-

domain QA, where a model must find relevant document text from (up to) millions of documents first

before finding the specific answer to a question. DrQA is a pipeline model, consisting of two compo-

nents: a document retriever and a document reader. The document retriever first identifies documents

relevant to a given question using traditional information retrieval techniques, including TF-IDF scores

and n-gram features (see Jurafsky and Martin, 2009, chap. 23). The top 5 ranked documents are then

independently fed into a document reader model, which predicts an answer in each document, and the

most likely answer overall is chosen as the final answer. The document reader model is a simple model

using LSTM layers and multiple input features for each word, but the overall pipeline architecture itself

is agnostic to the specific reader model design.

DrQA achieved state-of-the-art results at the time of publishing, beating the BiDAF model on the tradi-

tional SQuAD setting, whilst also achieving good results on open-domain datasets where it is required to

locate answer documents from a set of thousands in addition to predicting the precise answer to a ques-

tion. The ‘retrieve and then read’ paradigm proposed in the DrQA model is now the current standard

across open-domain and long-document reading comprehension, although the models used for reading
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and retrieving have changed. This is due to the basic nature of the two models proposed: utilising more

complex neural methods for document retrieval can aid in retrieving documents with little lexical over-

lap with a given question. In addition, as each document is processed independently, DrQA is unsuitable

for datasets such as HotpotQA which require sharing information across documents to find the answer.

2.4.3 Pretrained Language Models

Recently, pretrained language models have overtaken the field of NLP, including QA, due to their high

performance and versatility across many different NLP tasks. These models are largely based on the

model proposed in Devlin et al. (2019), commonly referred to as ‘BERT’. These models utilise large

stacks of attention mechanisms and lengthy pre-training tasks on vast amounts of data to learn how to

produce rich contextual vector representations of words in an unsupervised manner. After pre-training,

these models are then ‘fine-tuned’ for a specific dataset or task by training for a few epochs on the given

dataset/task. This allows such models utilise general language understanding abilities learnt through

pre-training for these specific tasks, and such an approach has yielded state-of-the-art performance for

various reading comprehension datasets (Devlin et al., 2019; Yang et al., 2019). We give a more thorough

description of the architecture of BERT and related models in chapter 6.

The power of these models lies in their size and pretraining: they are extremely large models (the ‘base’

version of BERT having over 100 million parameters), with excellent pattern memorisation abilities, and

through pre-training on large amounts of language, can gain an impressively deep syntactic and semantic

understanding of language. However, these models are extremely computationally expensive due to

heavy reliance on self-attention mechanisms, which require the calculation of scores between every pair

of words in an input text, resulting in O(n2) runtime and significant GPU memory requirements. Due

to this, these models can only process texts of relatively short length, with the task of improving their

scalability being an ongoing research question. As such, these models are still a long way off being

able to process anything more than a handful of documents at once due to computational and memory

constraints. In addition, recent work has shown that there is room for improvement on these models in

multi-hop question answering through the addition of specialised layers applied to their outputs (Wang

et al., 2019c), although the potential gains are small. Finally, these models are almost entirely black

boxes, with attempts to understand their internals requiring sophisticated probing experiments (Tenney

et al., 2019). Thus, while large pretrained language models are certainly important components of
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the current state-of-the-art QA methods and have achieved impressive results, there is still space for

improvement on these models in several areas.

These three popular models serve both as components of and inspiration for the current state-of-the-art

in multi-hop QA, and we leverage aspects of their designs for our own models. We summarise these

models in table 2.1 below.

Paper Model Dataset(s) Task
Seo et al. (2017) BiDAF SQuAD, CNN/Daily Mail dataset Extractive QA

Chen et al. (2017) DrQA
SQuAD, WebQuestions (Berant et al., 2013),
CuratedTREC (Baudiš and Šedivý, 2015),
WikiMovies (Miller et al., 2016)

Open-domain
extractive QA

Devlin et al. (2019) BERT SQuAD, GLUE (Wang et al., 2019b)
Extractive QA,
Natural language
understanding

TABLE 2.1. Summary of models discussed in section 2.3.

2.5 Multi-Hop Question Answering

While the models discussed above are extremely popular and influential, they were originally largely

developed for basic reading comprehension setups, where the model is given a small segment of text

and tasked with finding an answer to a question in the text, with the prior knowledge that there is always

a valid answer present in the text (the exception being DrQA, as discussed above). This constrained

version of the task is largely now ‘solved’, with superhuman performance achieved on popular datasets

using this setup (e.g. SQuAD). As such, recent work has examined developing more challenging and

useful reading comprehension tasks. One such work is the HotpotQA dataset (Yang et al., 2018), which

shares the same basic setup noted above, but increases the difficulty in two ways: first, by asking

questions that require multiple steps of reasoning (called ‘multi-hop reasoning’), and second by

providing longer segments of text, requiring a model to not only deal with longer and noisier inputs but

also to retrieve multiple facts and perform multi-step reasoning in order to find the correct answer. In the

closed-domain distractor setting of HotpotQA, models are given 10 segments of text (usually paragraphs

from Wikipedia) for each question, only 2 of which are required to find the answer. In the open-domain

full-wiki setting, a model must instead find the relevant text segments from an entire dump of Wikipedia4.

In both settings, models are additionally tasked with marking what sentences support their prediction

4A specific cleaned dump of Wikipedia is used to ensure the nature of the dataset does not change over time with Wikipedia.
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(called ‘supporting facts’), and must also be able to answer polar (or ‘yes/no’) questions. We provide

more details on this dataset in chapter 3. In this section, we examine the current state-of-the-art across

both HotpotQA setups, as this dataset is the primary focus of our work.

2.5.1 Closed-domain Multi-hop QA

FIGURE 2.2. Diagram of the full DFGN pipeline
from Qiu et al. (2019)

One relatively early approach to the hotpot dis-

tractor setting is the dynamically fused graph net-

work (DFGN) (Qiu et al., 2019). This network

utilises a BERT model for document selection

and then constructs a graph of entities to reason

over the input documents. First, the 10 input

documents are scored by a trained BERT model,

and only documents over a certain score are se-

lected (this score is tuned to maximise recall), as

BERT is unable to process all 10 at once. The

selected documents are simply concatenated into

one long string and entities are extracted using the

Stanford coreNLP toolkit (Manning et al., 2014).

These entities serve as nodes in a graph, and edges

are constructed between entities in the same sen-

tence, entities with the same text, and entities

in the same paragraph (via a constructed para-

graph node). The concatenated text is then passed

through a BERT model and bi-attention layer (Seo et al., 2017) along with the given question to con-

struct contextual embeddings for the input documents. Importantly, this BERT model is not trained with

the rest of the network, which greatly harms the performance of this network. These inputs are then

passed through a series of ‘fusion blocks’, which iteratively construct embeddings for each node in the

entity graph from word embeddings, mask out entities unrelated to the current reasoning step using a

mask generated from the question embeddings, and then apply a graph attention layer (Veličković et al.,

2018) to the entity graph, before finally using a bi-attention layer to update the word embeddings with

information from the output of the graph attention layer (wherein information is passed between adjacent

entity nodes). Each fusion block thus performs one reasoning step, each block focusing on a sub-part
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of the question. In order to perform answer and supporting fact prediction, a stack of LSTM layers is

used, with each layer making one prediction and feeding its predictions into the next layer. We provide

a diagram of the overall model in figure 2.2.

This model performs well above the non-BERT-based baseline, and ablations performed by the authors

suggest the graph network is vital to its good performance. However, recent work (Shao et al., 2020) has

found that fine-tuning the BERT model (not performed by the original DFGN network) and removing

the fusion blocks can provide performance well above the complex DFGN model, throwing into doubt

the need of the complex graph setup. This highlights the power of BERT for question answering and

shows that attention-based layers such as the transformer (which makes up BERT) are more than suitable

enough for multi-hop QA. Despite this, the use of iterative blocks for multi-step reasoning does provide

benefits when not fine-tuning BERT, and also provides a more interpretable model, as one can examine

the attention masks in each block to see what entities are being examined by the model. Thus, while

overly complex, the sequential block-based design of the DFGN is still worth examining, especially as

its iterative cell design shares some similarities with that of the MAC cell.

Tu et al. (2020) show the utility of BERT for QA by using a basic BERT model for answer prediction,

along with more complex document selection and supporting fact models. This model, called the ‘Select,

Answer and Explain’ (SAE) model, improves upon the basic document selection method of the DFGN

by considering inter-document interactions, rather than scoring each document independently. It first

constructs document vectors by passing each document (along with the question) through a BERT model

and extracting the ‘CLS’ (or ‘classification’) token embedding from the output, which is a dense vector

representation of the input document and question. The CLS representations from each document are

then passed through a multi-head attention mechanism (the attention mechanism used in the transformer

network, and discussed in more detail in chapter 6) to model interactions between each document, and

then finally passed through a bilinear layer to provide a score for each document pair (Di, Dj). The

ground truth score is 1 if Di is ranked higher than Dj and 0 otherwise, where the answer document

is ranked first, other supporting document ranked second, and all other documents ranked equal third.

During inference, the documents with the top two scores are chosen. We provide a diagram of the

document selection model in figure 2.3. This method provides higher recall and accuracy on selecting

the relevant documents than a simple BERT ranking approach (as was used in the DFGN) and makes use

of past research into ranking for information retrieval (Liu, 2011). Given the top two scoring documents,

the answer is then predicted by concatenating the two documents into a single string, and passing them
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through a BERT model (as described above) along with the question. A graph composed of sentence

embeddings linked through entity matching is constructed and passed through a multi-relational graph

convolutional network (De Cao et al., 2019) to predict supporting facts and if the answer is yes or no.

FIGURE 2.3. A diagram of the SAE document selection pro-
cess from Tu et al. (2020). Di refers to the text of the ith

document.

This model achieved state-of-art re-

sults at its time of published, and out-

performed the more complex DFGN

model, highlighting the power of a

well-finetuned BERT model. Its docu-

ment selection method is far more ac-

curate than the DFGN, and can eas-

ily be used in other approaches to the

distractor setting. However, the gains

reported by the use of the graph net-

work for supporting facts are small, and

we find later in this work we can out-

perform the SAE with far simpler approaches to supporting facts, suggesting again that these graph-

based approaches are potentially unnecessary. In addition, while the heavy reliance on BERT is core to

performance, the interpretability of the model is harmed due to its black-box nature, with the authors

only showing some basic attention maps for the sentence embedding creation process (for which the

simpler self-attention mechanism is easy to visualise). Finally, the pipeline nature of the SAE model

means if the document selection is incorrect, the rest of the model is unable to ‘course correct’ and

instead will always provide the wrong answer. As such, the SAE model provides an effective model

for document selection and highlights the importance of BERT for QA, but is also potentially overly

complex due to its use of graph networks with little performance gain.

More recently, the hierarchical graph network (HGN) makes better use of graph networks for HotpotQA,

being the current highest published model on the HotpotQA distractor leaderboard5. This model more

tightly integrates a graph network into its reasoning process, adding a strong multi-hop inductive bias

into the model. First, the HGN uses a BERT-based model to rank input paragraphs, like the DFGN. The

top-two ranking documents are selected, and the top-two ranked documents hyperlinked to these first

5At the time of writing, November 18, 2020.
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FIGURE 2.4. Diagram of HGN model from Fang et al. (2020)

two are then selected. This ranking makes use of the fact that questions within HotpotQA were created

by examining Wikipedia hyperlinks, with supporting documents always connected by hyperlinks.

These four selected documents are then concatenated together with the question and passed through

a BERT-based model along with a bi-attention layer to construct contextual question-aware word em-

beddings. These are then used to construct a hierarchical graph, where each node represents either the

question, a paragraph, a sentence, or an entity in a sentence. The nodes are constructed by passing a

bidirectional LSTM over the word embeddings and concatenating its hidden states at the start and end of

each respective span of text. Entity spans are detected using the SpaCy library (Honnibal and Montani,

2017). The question node is constructed by max-pooling over the question word embeddings. Each node

is then connected any span of text it is contained within (i.e. an edge is drawn from a paragraph node to

all sentences inside it), as well as edges being added to connect hyperlinked documents and matching en-

tity nodes. The final graph is passed through a graph attention network (Veličković et al., 2018), and the

resulting enriched node representations are merged back with the contextual word embeddings using a

gated attention mechanism. These graph-enriched word embeddings are then used to predict the answer,

with the node representations used to predict supporting facts, as well as relevant entity and paragraph

nodes (which are used in training to aid the model’s reasoning process). We provide a diagram of the

overall model in figure 2.4.

The HGN outperforms the SAE model, and at time of publishing was state-of-the-art on HotpotQA.

Furthermore, ablation experiments show its graph usage improves on a non-graph model by 3 points,

providing strong evidence the graph is useful in this case, although the majority of the edges provide
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relatively small performance improvements, suggesting the graph could be pruned while retaining its

original performance. However, the authors do not test utilising transformer networks in place of the

graph attention network, which Shao et al. (2020) showed was possible to do for the DFGN model

without harming results. Furthermore, the HGN’s hyperlink-based document selection process is poten-

tially exploitative of a bias in the HotpotQA dataset, which was constructed using hyperlinks, limiting

its application to other datasets and tasks. Finally, similarly to the SAE model, the fact that document

selection is a separate step means the model is unable to recover from an erroneous document selection

step. Thus while the HGN shows an effective method for integrating graph-based reasoning more tightly

than the SAE model, its graph usage is still potentially overly complex, and its document selection step

could be further improved.

As we have seen, closed-domain multi-hop QA models are quick to use graph-based techniques for

determining supporting facts and performing entity-based reasoning, but such complex graph techniques

are potentially unnecessary with proper fine-tuning. Truly core to these methods is heavy usage of a

BERT-based model and their document selection approach, as well as tighter integration of supporting

facts into the answer prediction process. We focus on this document selection step in our second model,

whilst also exploring non-graph based models that still provide strong multi-hop reasoning abilities.

2.5.2 Open-domain Multi-hop QA

In open-domain QA, tested by the HotpotQA full-wiki setting, models must retrieve relevant documents

from thousands (or more) or documents in order to find an answer. This is a more realistic setting

than the distractor setting, where models get a shortlist of documents guaranteed to contain the correct

answer. As a result, models for the full-wiki setting focus more on document selection and retrieval than

document reading, in contrast to the closed-domain distractor setting.

Ding et al. (2019) present a framework which iteratively constructs a knowledge graph from input doc-

uments called CogQA. It is comprised of two systems: first, a BERT model, which extracts entities and

information from a document’s text, slowly building a connected graph of entities, which store with

them the sentence they appear in. Given an entity mention in a document, the BERT model predicts the

likelihood of that entity being useful as the next step in the path or being the answer. If it is the next step,

then a graph edge is constructed from the current entity’s sentence to the paragraph with title matching

that entity, with the paragraph itself retrieved and passed through the BERT model to determine the next
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FIGURE 2.5. Diagram of proposed CogQA architecture from Ding et al. (2019), rep-
resenting the step when visiting node x. X[t] represents the hidden state of the graph at
step t. Classification module not shown.

step. If it is an answer, an answer node is appended to the graph. The second system is a custom vari-

ant of a graph convolutional network (GCN) (Kipf and Welling, 2017), which the constructed graph is

passed through to allow neighbouring nodes to share information and construct an encoded representa-

tion of the graph. The encoded representation of the final graph is then passed to a classification module

to make a final prediction. An overview of this architecture is given in figure 2.5.

CogQA improved on the existing state-of-the-art when evaluated on HotpotQA’s full-wiki setting, with

especially drastic improvements in the retrieval of supplementary facts (which are output by examining

the entities the model uses to build the graph). Furthermore, the authors also note that by examining the

constructed graph, the reasoning steps made by the model can be determined, adding some degree of

interpretability. The authors also show the proportion of answers with correct explanations is higher for

CogQA than previous models, supporting their claim that CogQA is more interpretable than previous

approaches.

This iterative graph construction essentially means that the graph retrieval can be learnt jointly by the

model, unlike the disjoint retrieval steps seen in the distractor setting models. However, just matching

entities to document titles may prevent the model from detecting certain hops (where the entity may

not be mentioned in a document title in the same way as in a paragraph). Furthermore, noisy sentences
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FIGURE 2.6. Diagram of recurrent retrieval model from Asai et al. (2020). The con-
struction of two potential paths is shown, with documents represented by letters A-H.

or documents, with many potential next-hop entities, may result in more complex and thus harder to

understand graphs, reducing the interpretability of this model. Finally, the authors provide no thor-

ough examination of the interpretability of their model’s cognitive graphs, instead just providing a small

handful of example graphs.

In contrast to CogQA’s complex entity-based approach, simpler methods for document retrieval have

been shown to work just as well. Asai et al. (2020) proposed a document retrieval model for Hot-

potQA, utilising the hyperlinks between documents in HotpotQA (since the documents are taken from

Wikipedia) to build a graph of documents. Paths through the graphs are then constructed in an iterative

manner, similar to CogQA. At each step, an RNN takes in the question and a potential next-hop para-

graph and predicts the probability that the given paragraph is the next hop. An ’end of path’ option is

also provided to allow paths of differing lengths. The most likely paths are found using beam search

(keeping the top-K most likely paths at each step), with initial documents chosen by TF-IDF scores.

The answer is then predicted by passing the input question and all documents in a chosen path through

a BERT model, which finally predicts if the path contains the correct answer and the location of the

predicted answer within the relevant documents. An overview of this architecture is given in figure 2.6.
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The authors evaluated the model on HotpotQA, SQuAD, and Natural Questions (?) and showed im-

provements over CogQA and other competitive models. Furthermore, they reported improvements in

determining supporting facts in HotpotQA, indicating that the model also provides some degree of in-

terpretability. Furthermore, the authors also showed the approach works well when using an entity

linker mechanism instead of hyperlinks, albeit not as well as the hyperlink-based method (likely due to

the biases present with HotpotQA itself, as discussed above). However, the method does rely on docu-

ment summary vectors constructed from concatenating each document with the question, which requires

re-encoding every document node for each question with BERT, which is fairly costly. The authors ex-

periment with not concatenating with the question, but find this significantly degrades results. Overall,

however, this approach presents a novel and effective method for document selection which strongly

inspires our own BERT-based model.

The iterative retrieval method presented in Asai et al. (2020) shares many similarities to a previous

model, the multi-step retriever (Das et al., 2019). This model, although not applied to multi-hop QA,

performs a similar iterative retrieval process on the SQuAD-open dataset, which shares a similar setup

to HotpotQA full-wiki, apart from the fact that all questions only require one document to answer,

rather than two. For this model, first, all paragraphs in the dataset are transformed into attention-based

summary vectors. A given question is then similarly encoded using an attention-based summary vector.

An iterative retrieve and read process is then performed: first, all paragraphs are scored by taking the

dot product between the question and paragraph values. Due to the intractability of performing this

operation between for millions of paragraphs, a modified nearest-neighbour algorithm is applied to find

the top (closest) paragraph vector for the given question vector. Second, the chosen paragraph is passed

through a regular machine reading comprehension model, such as the BiDAF or DrQA model (Seo et al.,

2017; Chen et al., 2017), and an answer span is proposed along with a probability. The hidden encoded

states of the question from the reading model (e.g. the question-based output from the bi-attention layer)

is then used to construct a new attention-based summary vector of the question, and fed into a GRU unit

along with the previous question vector to produce a new history-aware question vector. This is then

used to rank the paragraphs for the next step. After some set number of steps of this iterative process,

the model terminates and returns the answer span with the highest associated probability. We provide a

summary diagram of this model in figure 2.7.

The model was evaluated on the TriviaQA (Joshi et al., 2017), SQuAD-open (Chen et al., 2017), Quasar-

T (Dhingra et al., 2017), and SearchQA (Dunn et al., 2017) datasets, showing improvements over a
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FIGURE 2.7. Summary diagram of the multi-step retreiver, from Das et al. (2019).

DrQA baseline, although it underperformed compared to a handful of strong recent models. However,

further experiments showed this approach could scale up to millions of paragraphs, a size not possible

for these other models, due largely their dependence on query-dependent encodings of each paragraph

(thus requiring the re-encoding of every input document for every query), unlike the multi-step retriever,

which used question-independent encodings. Furthermore, the multi-step approach essentially allows

the model to recover from poor retrieval results by reranking documents in its next step based on in-

formation learnt from reading an incorrect document. While interesting, the model requires a complex

reinforcement learning-based training method and was not applied to multi-hop settings, where follow-

ing a chain of documents is required for question answering and can provide a gold training path for

training the model without reinforcement learning. Other useful methods such as beam search and an-

swer reranking were also not explored, despite their potential utility for this approach. Furthermore,

integration with BERT-style models (which are common in current state-of-the-art) was not explored,

although the design of the multi-step retriever could easily be adapted to utilise BERT. Thus this is a
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TABLE 2.2. Summary of models discussed in section 2.5. N/A indicates the inter-
pretability of the model was not discussed in that paper.

Paper Model Dataset(s) Interpretability?
Qiu et al. (2019) DFGN HotpotQA (distractor) Attention weights
Tu et al. (2020) SAE HotpotQA (distractor) Attention weights
Fang et al. (2020) HGN HotpotQA (distractor) N/A
Ding et al. (2019) CogQA HotpotQA (full-wiki) Reasoning path

Asai et al. (2020) Recurrent Retriever
HotpotQA (full-wiki), SquAD,
Natural Questions Reasoning path

Das et al. (2019) Multi-step Retriever
TriviaQA, Quasar-T,
SearchQA, SQuAD-open Reasoning path

promising but under-explored model that utilises a recurrent retrieval process to great effect on non-

multihop datasets, integrating the retrieval and reading components more tightly than Asai et al. (2020).

Augmenting this model with more modern open-domain QA components and the improvements made

in Asai et al. (2020) is an interesting and promising path of research, which we explore in this work.

Thus, we have shown how iterative retrieval methods are a promising paradigm for QA, both for multi-

hop and non-multi-hop datasets. Furthermore, by examining the steps taken by these models, their

reasoning processes can be made somewhat clear, as one can trace their reasoning path through a set of

documents. However, interpretability across both settings is somewhat lacking due to a large reliance on

BERT for answer prediction. Furthermore, while Das et al. (2019) and Ding et al. (2019) tightly integrate

their retrieval and answer prediction mechanisms, Asai et al. (2020) does not, utilising separate reading

and retrieval modules. Thus, exploring tighter integration of these recurrent retrieval mechanisms with

the document reading and reasoning process is clearly an interesting and promising line of research.

We summarise the papers mentioned in this section in table 2.2.

2.6 MAC Networks and Text-based Reasoning

2.6.1 MAC Networks

Compositional attention networks (CANs, or more commonly referred to as MAC networks) (Hudson

and Manning, 2018) are a novel network design for the visual question answering task, where a model

is tasked with answering questions about an image. The architecture is primarily based around a recur-

rent cell: the memory, attention, composition (MAC) cell, which is designed to model basic reasoning

components required for compositional reasoning. As seen in figure 4.2, each cell contains three units,
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one for reading the question, one for reading the image, and then one for integrating information from

the image into a memory state based on the information from the question. All cells use a mixture of

attention and linear layers to perform their specific tasks. Each cell also takes in and outputs a control

state and a memory state in a recurrent manner. The control state is only manipulated by the control

unit and represents information extracted by the model from the question. This is passed to the read

and write units to then guide both the extraction of information from the image by the read unit and

the integration of the read information into the memory state by the write unit. The memory state thus

represents useful information extracted from the knowledge base (i.e. image), which is used to perform

a final answer prediction. We provide a more in-depth description of the MAC cell in chapter 4.

FIGURE 2.8. Diagram of a MAC cell
from Hudson and Manning (2018). ci
and mi represent the control and mem-
ory states at step i, while q and KB rep-
resent the encoded question and knowl-
edge base. ri represents the information
extracted by the read unit at step i.

MAC networks carry several benefits over other approaches

to VQA, achieving state-of-the-art accuracy on the CLEVR

dataset (Johnson et al., 2017) with less compute than other

approaches, and exhibits better generalising ability, achiev-

ing high accuracy even with small subsets of training data.

Finally, the reasoning steps taken by the network can be vi-

sualised by examining the attention maps produced by each

cell over the input image and question, meaning the de-

sign is reasonably interpretable. Thus, MAC networks are

clearly promising candidates for applying to interpretable

multi-step reasoning.

2.6.2 Applying MAC Networks to Text

Despite the success of the MAC network, relatively few pa-

pers have examined applying MAC cells to text-based QA tasks. Below we describe work that applies

MAC-inspired designs to QA tasks where all input is purely text.

2.6.2.1 Multiple-choice QA with MAC networks

Yu et al. (2019) proposed a model close to the original MAC design and applied it to multi-step (‘in-

ferential’) multiple-choice question answering, where a list of possible answers is given alongside a

document and question. The proposed model mainly utilises a novel cell largely similar in design to the

MAC cell, the largest difference being the use of a dynamic number of cells rather than a fixed number.
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The authors evaluated against a variety of multiple-choice QA datasets and found that the MAC-inspired

design outperformed the state-of-the-art while retaining some of its interpretable qualities, suggesting

that the MAC cell is a good candidate for text-based QA. However, they require an overly complex re-

inforcement learning-based training method to train the dynamic number of cells, rather than utilise the

existing mechanisms in the MAC network which allow for arbitrary-length reasoning without complex

training. Furthermore, the potential answer options are tightly integrated into their cell design, providing

closer guidance to the reasoning process than is possible in span-based QA tasks, where there is no list

of potential answers for the model to refer to. Finally, the authors do not make use of pretrained models

such as BERT, variants of which have since out-performed this model on multiple-choice QA datasets

(Pan et al., 2019; Jin et al., 2020; Wang et al., 2019a).

More recently, Le Berre and Langlais (2020) also apply MAC networks to multiple-choice QA, focusing

on the ARC (Clark et al., 2018) and OpenBook QA (Mihaylov et al., 2018) datasets, which focus more

on commonsense questions. They experiment with integrating a MAC network with an existing BERT

model for these datasets, and find it provides minimal benefits in very particular setups. This indicates

that while the MAC network may be useful, it requires either further adaption or a different overall

design to provide substantial performance gains to a BERT-based model. Sinha et al. (2019) also apply

MAC networks to a novel multi-choice QA dataset called CLUTRR, which tests a model’s ability to

learn and apply graph-based logical rules from natural language text. They show that a MAC network

is competitive at detecting supporting facts and more robust to noise than other models, although less

performant than a basic BERT model. However, they do not explore augmenting the MAC network

with BERT or in other ways, meaning there are many further ways to improve on their usage of MAC

networks.

2.6.2.2 MAC for expert-finding

Fu et al. (2020) introduced a modified MAC network, called the ‘recurrent memory reasoning network’,

in order to tackle the task of identifying users best suited to answering a given question. For this task,

a network is provided with a question, a candidate expert, and a list of previous answers given by the

candidate expert. The network design is largely similar to the original MAC cell design, its largest

difference being that the authors add a document selection mechanism into the read unit, allowing each

MAC cell to select a set of k answers given by a given expert, and use those as the knowledge base for

that cell. This allows the MAC network to shrink the size of the input to its regular read unit, and the
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FIGURE 2.9. Diagram from (Jiang and Bansal, 2019a), showing their augmented bi-
attention flow model. The output of the control unit is used to bias the Query2Context
attention. Both attention distributions are otherwise calculated as in (Seo et al., 2017).

authors report this mechanism results in improved performance for the expert-finding task. Therefore,

this is another clear example of the utility of the MAC for different text-based reasoning problems, and

proposes a useful method for allowing the MAC network to process large numbers of documents (when

only a subset are relevant to the task). However, the task of expert-finding is somewhat simpler than

QA, as it does not require token-level reasoning nor more complex reasoning - rather, the model simply

needs to accumulate evidence that a user contains enough expertise for a given question. Furthermore,

the authors do not examine using BERT, which again may provide large performance gains.

2.6.2.3 Control-Augmented DocQA

Jiang and Bansal (2019a) critiqued and improved the HotpotQA distractor setting dataset by showing

that many questions in the dataset can be solved unintentionally in a single hop and constructing a more

challenging dataset by using adversarial methods. In particular, they compared the performance of a

DocQA model (Clark and Gardner, 2018) with a DocQA model augmented with a control unit (from

the MAC cell design) on both the original HotpotQA and their own adversarially-generated dataset. The

architecture for the augmented model can be seen in figure 2.9, in which the output of the control unit

(an attention distribution over the question words) is used to bias the bi-attention layer. The control unit

allows the network to focus on sub-parts of the question, which it is explicitly trained to do by training

the model to find the entity linking the two supporting documents (called the ‘bridge entity’), which is

called ‘bridge entity supervision’.
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The addition of the control unit improved performance across all tested datasets (when trained to predict

supporting facts as well as answers) and is more robust to adversarial data. Furthermore, the 2-hop

model with control unit removed performed reasonably worse than the 2-hop model with the control

unit, suggesting that the addition of the control unit improves the model’s ability to perform multi-step

reasoning. Hence, this paper shows that MAC cells are a promising candidate for further research into

multi-step reasoning models and that augmenting existing models with ideas or components from MAC

cells can improve their performance. However, despite the success of their control-augmented model,

the authors do not test any models closer to the original MAC architecture on their datasets and do not

test more than two ‘hops’ in their model. Thus, MAC cells are clearly promising candidates for good

performance on the HotpotQA dataset.

2.6.2.4 Neural Module Networks (NMNs) for Text-based Reasoning

Closely related to MAC networks are neural module networks (Andreas et al., 2016), which dynamically

select neural modules (i.e. sub-neural networks) to perform different reasoning steps before reaching an

answer. In doing so, neural module networks are interpretable, as one can see the modules chosen,

and flexible, as one can simply design new modules for new types of reasoning. While initially only

applied to visual question answering, recent work has examined adapting these to complex text-based

reasoning, primarily examining multi-hop reasoning (Jiang and Bansal, 2019b) and discrete reasoning

(Gupta et al., 2020). Jiang and Bansal (2019b) adapted the neural module network to the HotpotQA

dataset, utilising not only a control unit similar to the MAC network, but also a memory state and iterative

steps of attention to perform the multi-hop reasoning required by the dataset. While the model can be

trained end-to-end (i.e. just on the question and answer pairs), they find that additional supervision

on the network is required to guide its reasoning process, resulting in higher scores on the HotpotQA

dataset. They also perform a short examination of integrating BERT-based embeddings into their model,

finding that it performs above a vanilla BERT model. However, they use a fairly naive approach for

document selection with their BERT model, when recent work has shown improved document selection

techniques can greatly improve the performance of BERT (Tu et al., 2020). Furthermore, the authors did

not examine the integration of supporting facts into their model, which would potentially provide better

supervision for the reasoning process than their naive heuristic for finding a bridge entity. Gupta et al.

(2020) also adapt the neural module network to QA, but focus on discrete reasoning rather than multi-

hop reasoning, and similarly find that they can achieve competitive performance only when utilising

auxiliary supervision to guide its reasoning process.
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2.6.2.5 Summary

Therefore, we can see that MAC networks show various improvements over existing models: they are

better able to perform multi-step reasoning than existing popular QA models across various datasets

and provide in-built interpretability via their attention maps. Whilst several works have adapted MAC

networks to multiple-choice QA (Yu et al., 2019; Le Berre and Langlais, 2020), no work has yet closely

examining adapting the MAC architecture to span-based QA. In addition, the incorporation of MAC-

like elements for span-based multi-hop QA (Jiang and Bansal, 2019a) and the success of neural module

networks on span-based QA (Jiang and Bansal, 2019b; Gupta et al., 2020) suggests that the MAC design

has promise for these tasks. Furthermore, little work examines incorporating BERT-based embeddings

into these architectures, with existing work focussing on the use of GloVe-based embeddings (Hudson

and Manning, 2018; Yu et al., 2019; Jiang and Bansal, 2019a,b). Thus, we can see that the application of

MAC networks for span-based QA is an under-explored but promising line of research, with no existing

work examining a full adaption the MAC model to span-based QA. We address this gap in this work,

examining how we can keep the core ideas of the MAC cell intact while adapting it to span-based QA.

We summarise the papers presented in this section in table 2.3.

Paper Model Task Dataset
Hudson and Manning (2018) MAC Visual multi-choice QA* CLEVR, CLEVR-humans
Yu et al. (2019) Micro-infer Cells Text-only multi-choice QA MultiRC, RACE, MCTest
Le Berre and Langlais (2020) BERT + MAC Commonsense multi-choice QA ARC, OpenBook QA

Jiang and Bansal (2019a) Control + DocQA Text-only multi-hop QA
HotpotQA
(original and adversarial)

Jiang and Bansal (2019b) Hotpot-NMN Text-only multi-hop QA
HotpotQA
(original and adversarial)

Gupta et al. (2020) Text-NMN Text-only complex QA DROP
Sinha et al. (2019) MAC Inductive reasoning CLUTRR (new dataset)

TABLE 2.3. Summary of models presented in section 2.6. * The CLEVR dataset has
a closed answer set, and so the MAC treates it like a multiple-choice answer dataset,
where the model simply chooses the most likely answer from a large list of possible
answers.
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2.7 Conclusion

While there has been much research into complex and multi-hop question answering, current approaches

generally revolve around the use of large pretrained language models and complex graph-based designs,

despite such complex graph approaches being potentially unnecessarily complex. The reliance on pre-

trained language models also provides little in the way of interpretability, despite that being a primary

task provided by the HotpotQA dataset. Furthermore, several models keep the reasoning process for

supporting facts and answer prediction distinct (Tu et al., 2020; Asai et al., 2020), going against the

purpose of the supporting facts to provide an insight into the reasoning process of the model. In con-

trast, MAC-style models provide a method to ‘peer inside’ their reasoning process, through the use of

attention maps. In addition, the multi-step design of MAC models seems naturally suited to the task of

multi-hop reasoning, being similar to the approach explored in Qiu et al. (2019).

However, no work has yet examined in-depth the application of MAC networks to span-based multi-hop

reasoning, despite their success not just in VQA, but also in multiple-choice question answering. Whilst

adapting modular networks to span-based question answering is difficult, as evidenced by recent work

on neural module networks, it can still lead to competitive results, potentially resulting in models that are

simultaneously more powerful and interpretable than existing models for multi-step reasoning. As such,

MAC cells are clearly promising candidates for further research in relation to multi-hop QA, which we

will explore in the following chapters.



CHAPTER 3

Evaluation

In this chapter, we provide a detailed description of the datasets used for the evaluation of our work,

focusing on HotpotQA, a popular multi-hop reading comprehension dataset. We also list the various

baseline and state-of-the-art models in multi-hop reasoning used to compare our model against. Finally,

we describe the metrics and methods we will use to evaluate models on these datasets.

3.1 Datasets

3.1.1 HotpotQA

We primarily focus our evaluation on the HotpotQA dataset (Yang et al., 2018), a popular multi-hop

reading comprehension dataset. This dataset has inspired a flurry of recent research, with recent methods

substantially improving on the baseline models provided along with the dataset (Fang et al., 2020; Asai

et al., 2020). However, a substantial gap still exists between the current state-of-the-art and human

performance, indicating there are further possible gains in performance. The dataset consists of human-

written questions that require reading across multiple documents. The documents are first paragraphs

from a Wikipedia dump. In addition to answers, HotpotQA also provides annotations of ‘supporting

facts’: labelled sentences indicating if a given sentence from a document supports the answer. These

supporting facts thus provide a way to evaluate the interpretability of a model, and encourage more

interpretable model designs (albeit in a very specific way). As such, HotpotQA provides an excellent

testbed for building novel interpretable models for multi-hop reading comprehension.

The HotpotQA dataset contains two setups for models: the distractor setting, in which each question is

paired with a set of ten documents (two of which are necessary to read to find the correct answer), and

the full-wiki setting, in which documents are not provided, and models have to find relevant documents

from a set Wikipedia dump themselves. As there are over 5 million documents in the provided Wikipedia
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Split # Examples
train 90,447
dev 7,405
test-distractor 7,405
test-fullwiki 7,405

TABLE 3.1. Number of examples in each split of the HotpotQA dataset.

dump (Yang et al., 2018), this is a non-trivial task. This provides two clear paths for research: improving

the reading ability of models given relevant documents (tested in both setups), and improving the ability

of models to retrieve relevant documents (tested in the full-wiki setup). While both setups have their

own test set, they share train and development sets. Note that these test sets are completely private and

can only be evaluated via submission to the official HotpotQA website. We give summary statistics of

the overall dataset in table 3.1.

Across both setups, there are two types of questions present in HotpotQA: bridge questions, which

require finding out the identity of or facts about some entity linking two parts of the question (the

‘bridge entity’), and comparison questions, which simply require comparing two entities in some way.

An example of a bridge question is ‘2014 S/S is the debut album of a South Korean boy group that

was formed by who?’. To answer this question, one must first find out the name of the boy group

being referred to before they can determine who they were formed by. Therefore, the name of the boy

group (‘Winner’) is the bridge entity in this question. An example of a comparison question would be

‘Did LostAlone and Guster have the same number of members?’. To answer this question, one must

first find out the number of members each band has before comparing the two. Comparison questions

can further be divided into polar comparison questions, which just require a yes/no response (as the

previous example), and non-polar comparison questions, which require answering with an entity name,

for example: ‘Who is older, Annie Morton or Terry Richardson?’. All non-polar questions (bridge and

comparison) can be answered with a text span from the input documents. Models built for HotpotQA

thus generally adopt a two-stage answer prediction process: first, they predict if the answer to a given

question is ‘yes’, ‘no’, or a span in the text. If it is a span, they then predict the start and end location of

the text span that serves as the answer. We provide summary statistics of each question type in table 3.2.

We can also split up the HotpotQA dataset by answer type. While answer type labels were not explicitly

collected by the authors, we hand-labelled 300 randomly-chosen examples from the development set

in order to gain a greater understanding of the types of reasoning required. We provide the summary

statistics of each type in table 3.3, and the descriptions of each label can be found below:

https://hotpotqa.github.io/
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Split Question Type # Examples

train
bridge 72,991 (80.7%)
polar comparison 5,481 (6.1%)
non-polar comparison 11,975 (13.2%)

dev
bridge 5,918 (79.9%)
polar comparison 458 (6.2%)
non-polar comparison 1,029 (13.9%)

TABLE 3.2. Number of different question types in train and dev splits. Test counts are
unknown due to test set being kept private.

• Yes/No: Answer is yes/no

• Adjective: Answer is an adjective

• Artwork: Answer is the name of an artwork, including visual art, songs, tv shows, etc.

• Event: Answer is the name of an event (for example, a race or sporting event).

• Group: Answer is the name of a company, team, or organisation.

• Location: Answer is a place name.

• Person: Answer is a person name.

• Number: Answer is a number.

• Date: Answer is a date.

• Common noun: Answer is a general common noun that doesn’t fit into other categories (for

example, the name of a profession).

• Proper noun: Answer is a proper noun that doesn’t fit into other categories (for example, the

name of a product).

• Mislabel: Answer is clearly incorrect or nonsensical.

3.1.2 Adversarial HotpotQA

While HotpotQA has been a popular and useful dataset for studying multi-hop question answering,

several papers have called its multi-hop nature into question in the distractor setting, showing that var-

ious models are able to exploit keywords in questions and skip the intended reasoning paths to be able

to answer questions without drawing upon multiple documents (Jiang and Bansal, 2019a; Min et al.,

2019). To remedy this, Jiang and Bansal (2019a) propose an adversarially-generated dataset that pro-

vides stronger distractors than regular HotpotQA. This dataset is constructed by finding the document

containing the answer, and replacing mentions of the answer in it with slightly modified answer phrases

(e.g. if the answer was ‘World’s best goalkeeper’, a perturbed version would be ‘World’s best defender’).
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Answer Type # Examples
Person 73 (24.3%)
Location 54 (18.0%)
Group 27 (9.0%)
Date 27 (9.0%)
Proper noun 27 (9.0%)
Number 23 (7.7%)
Yes/No 21 (7.0%)
Artwork 16 (5.3%)
Common noun 15 (5.0%)
Adjective 9 (3.0%)
Event 6 (2.0%)
Mislabel 2 (0.7%)

TABLE 3.3. Number of different answer types from a random sample of 300 questions
from development set. See section 3.1.1 for details.

In addition, the bridge entity used to derive the original answer is replaced with a randomly sampled en-

tity, and all mentions of the bridge entity in the perturbed document are replaced with the sampled one.

This means that the perturbed document still satisfies the shortcut, but does not contain the correct an-

swer or the correct bridge entity. Four perturbed documents are constructed and then inserted into the

dataset by replacing 4 random distractor documents. Thus, by providing these perturbed documents

as strong distractors, we can better evaluate the multi-hop reasoning ability of our models. We follow

Jiang and Bansal (2019a) in evaluating on this adversarial dataset: we randomly sample 40% of the

adversarially-generated data and mix it into the regular HotpotQA training data, and then evaluate on a

fully adversarially-constructed development set. During testing, we also found that the code provided

by the authors1 marked their augmented distractor documents in their title2, allowing models trained on

the adversarial data to easily identify the new distractors and ignore them. To remedy this, we altered

their code to remove this mark, replacing it with a title that reflects the changes made in the document

itself. We apply this change to the generation of the adversarial training and development sets, and use

these modified sets for our own evaluation.

3.1.3 Single-Hop Reading Comprehension

In order to test our models’ generalising ability, we measure its performance on the popular non-multi-

hop reading comprehension dataset SQuAD, using both versions 1.1 (Rajpurkar et al., 2016) and 2.0

1Available at https://github.com/jiangycTarheel/Adversarial-MultiHopQA
2Specifically, the title of generated documents would always be ‘added’, rather than an actual title.

https://github.com/jiangycTarheel/Adversarial-MultiHopQA
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(Rajpurkar et al., 2018). These datasets share the same answer F1 and EM metrics as HotpotQA (ex-

plained in section 3.3) but ask simpler questions that do not require multiple documents to answer.

SQuAD 1.1 contains comprehension questions on small input documents (usually one paragraph from

a Wikipedia page), focusing purely on a model’s ability to understand short paragraphs of text. In addi-

tion, SQuAD 2.0 adds questions with no answers into the SQuAD 1.1 dataset, requiring models to not

only locate answers, but also determine if there is enough evidence in a given text in order to answer a

question. We utilise the no answer module from the DocQA model for no-answer prediction in SQuAD

2.0.

3.2 Baselines and State-of-the-art

In this work, we compare against several other models, including the original strong baseline for Hot-

potQA, and more recent work on the dataset. We provide a list of models we compare against below:

• HotpotQA Baseline (DocQA): This is the baseline model described in Yang et al. (2018), and

is an adapted version of the popular DocQA model (Clark and Gardner, 2018) for the Hot-

potQA dataset. This model utilises three key features from previous state-of-the-art models:

character-based embeddings combined with GloVe embeddings, a bi-attention layer, and a self-

attention layer. While this model does not use BERT-based embeddings (a core component of

current state-of-the-art approaches to question answering), it still remains a strong baseline for

non-BERT based methods.

• Control + DocQA: This is the baseline model augmented with a control unit introduced by

Jiang and Bansal (2019a). This utilises the control-augmented bi-attention layer used in our

model by adding a control unit to the DocQA model (although not utilising the other aspects

of the MAC cell design).

• Hotpot-NMN: This is a neural module network adapted to the HotpotQA dataset, introduced in

Jiang and Bansal (2019b). The network contains 3 modules which are dynamically assembled

for each input question, allowing custom logic for different question types. The overall network

design contains elements similar to the MAC network, including the control unit, and so is a

good example of a GloVe-based modular network that performs above the baseline model.

• BERT: We use a basic BERT model (Devlin et al., 2019) with the supporting fact predic-

tion design used by the baseline model (an RNN on top of the BERT model for constructing
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sentence embeddings) as a baseline for determining if our designs provide any performance

improvements over BERT.

• Select, Answer, and Explain (SAE) Model: This model was introduced in Tu et al. (2020)

for the distractor setting, and utilises a complex document selection process involving a BERT

model to determine the correct two documents required to answer the question. Once the doc-

uments have been selected, they are fed into a BERT model to predict the answer location. In

order to predict answer type (‘yes’, ‘no’, or ‘span’) and supporting facts, sentence embeddings

are constructed from the BERT output and a graph is constructed based on basic entity linking

between sentences. This graph is then passed through a graph neural network to make sup-

porting fact and answer type predictions. While this graph-based step is complex, the main

answering component of this model is simple, just using BERT to directly predict answer lo-

cations from a narrowed-down set of documents. As such, this model is a good example of the

upper limits of performance when using plain BERT-based models.

• Hierachical Graph Network (HGN): This model was introduced in Fang et al. (2020), and

is currently the highest-performing published model on the HotpotQA distractor setting3. This

model utilises a hierarchical graph network consisting of entity, sentence and document nodes

to both augment the predictions from a BERT-based model and to make supporting fact pre-

dictions. In addition, it utilises the hyperlinks originally present in the Wikipedia documents

to link relevant documents in its graph.

• Recurrent Retriever (RR): This model, introduced in Asai et al. (2020), is a highly compet-

itive model that establishes a new method for document retrieval in the HotpotQA full-wiki

setting. This model utilises a recurrent unit to perform a graph-based search over hyperlinked

documents as part of its document retrieval process, before using a BERT model to rank the

best paths found by the recurrent unit and predict the final answer. As the strongest published

model with a recurrent retrieval process, this model is a strong baseline for comparisons against

our own recurrent retrieval model.

For comparisons, we restrict comparisons of GloVe-based models to only other GloVe-based models

(DocQA, Control+DocQA, Hotpot-NMN), to ensure that comparisons are fair, since BERT along per-

forms incredibly strongly on HotpotQA, and it is non-trivial to integrate it into existing GloVe-based

approaches. Integrating BERT into our approach is studied in detail in chapters 5 and 7, in which we do

compare against models that utilise BERT (SAE, HGN, RR).

3At time of writing, November 18, 2020.
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3.3 Metrics

Both HotpotQA and adversarial HotpotQA utilise the same set of metrics for performance evaluation:

F1-score and exact match score. Three sets of these metrics are calculated: one set each for answer-

only evaluation, supporting fact-only evaluation, and joint answer and supporting fact evaluation. The

answer F1-score is calculated by first normalising both the ground truth and predicted answers by case-

folding (changing everything to lowercase), normalising whitespace to be single spaces only, removing

punctuation, and removing ‘a’, ‘an’, and ‘the’. After this, tokens are determined by splitting the answers

on whitespace, and the final score is calculated as:

Pa =
num. tokens same between true and predicted answers

total tokens in predicted answer

Ra =
num. tokens same between true and predicted answers

total tokens in ground truth answer

F1a =
2PaRa

Pa +Ra

The answer exact match score is calculated by following the same normalisation procedure as for the

F1-score, but then just checking if the two normalised strings are identical. If so, the score is 1, else it is

0.

The supporting fact metrics are determined in the ordinary manner. First, the number of true positives

(correctly identified supporting sentences), false positives (incorrectly predicted supporting sentences),

and false negatives (non-predicted supporting sentences) are counted. The F1 and exact match scores

are then calculated as:

Psp =
tp

tp+ fp

Rsp =
tp

tp+ fn

F1sp =
2PspRsp

Psp +Rsp

EMsp =

1, if fn+ fp = 0

0, otherwise
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Where tp, fp, and fn represent the number of true positives, false positives, and false negatives respec-

tively.

Finally, the joint F1 score is calculated as:

Pj = PaPsp

Rj = RaRsp

F1j =
2PjRj

Pj +Rj

The joint exact match score is simply 1 if both the answer and supporting fact exact match scores are 1,

and 0 otherwise. We report the average of the metrics described above, calculated across the entirety of

the dataset being evaluated on.

3.4 Evaluation Methods

We evaluate our models both quantitatively and qualitatively. For both models, we perform the follow-

ing quantitative evaluations, which are standard in deep learning-based NLP work, and important for

distinguishing where our models improve on existing work (Lipton and Steinhardt, 2019).

• Performance: We evaluate the overall performance of our final models on various datasets,

including HotpotQA and adversarial HotpotQA. When testing on adversarial HotpotQA, we

follow Jiang and Bansal (2019a) in reporting performance on both HotpotQA variants when

trained on adversarial or non-adversarial HotpotQA. We note that we found a small issue with

the adversarial dataset generation that we fixed (detailed above), and resulted in quite different

performance to that reported in Jiang and Bansal (2019a). As such, we limit our adversar-

ial evaluation comparisons to comparisons between the baseline and our models on the fixed

adversarial dataset (as these are the models we have access to training code for).

• Ablations: We remove or alter various components of our models and then evaluate perfor-

mance on HotpotQA to determine which are the most effective and their individual contribu-

tions to our overall performance.
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• Parameter tuning: We evaluate our model on HotpotQA while changing various hyperparam-

eters, including the learning rate, to investigate their effect on the performance of our models.

We also provide the following qualitative evaluations of our models, investigating the internal workings

and general behaviours of our models.

• Attention maps: We select some samples from the development set and visualise the attention

inside our models. This provides us insight into the interpretability of our models as well

as some degree of their inner workings. This evaluation is similar to evaluations provided in

Hudson and Manning (2018), Qiu et al. (2019), and Tu et al. (2020).

• Question and answer type breakdown: We breakdown each models’ performance using the

questions labelled by answer type as described in section 3.1.1, the question types provided in

the dataset itself (bridge, polar comparison, and non-polar comparison), and by the combined

length of the input documents. This provides us insight into which sort of questions our model

performs well on and which sorts it performs poorly on. This is an extension on the evaluation

provided by existing work, which largely only breaks down performance only by question type

(Qiu et al., 2019; Jiang and Bansal, 2019b; Tu et al., 2020).

• Error analysis: We examine a randomly-chosen sample subset of question-answer pairs our

models get completely wrong (0 F1) and label them with the reason for their low performance.

This provides us with insight into the failures of our model and potential areas for future work.

This is loosely based on the analysis performed in Fang et al. (2020).



CHAPTER 4

GloVe-based Model

In this chapter, we thoroughly describe the design of our GloVe-based model, the first model proposed

in chapter 1. This model is designed to take in a question and list of documents (all represented via raw

text), and output an answer to the given question, which is either a span of text from one of the provided

documents or a simple ‘yes’ or ‘no’. It consists of three general components:

• Encoding unit: We employ a model to encode documents and questions, mapping sub-word

units to contextually-aware vector representations. In this model, this is done using GloVe vec-

tors, character embeddings and bidirectional GRU layers (Cho et al., 2014). We also construct

a dense vector representation of the question.

• Recurrent Memory, Attention, Composition (MAC) Cell: We feed our vector representa-

tions in a recurrent MAC cell, which performs multi-step reasoning. In our baseline-based

model, the cell simply uses a modified bi-attention layer to calculate interactions between the

question and the input documents.

• Output unit: Finally, we use the outputs from the final MAC cell to predict the answer to a

given question, along with supporting facts. This is done using a final self-attention layer and

stack of GRU layers.

A diagram of this model is given in figure 4.1.

In the below descriptions, we use W d×b to denote weight matrices of dimension d × b, where d and b

are integers. We use b to indicate a weight matrix used for bias. Thus, W and b represent trainable pa-

rameters in our model. Although we use mini-batches during training, we leave out the batch dimension

in our description.

37
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FIGURE 4.1. High-level architecture diagram of our GloVe-based model.

4.1 Text Encoding

Before we can perform any reasoning, we first need to convert our text into a form that our model can

utilise - word embeddings. These are dense vector representations of words, which contain various

semantic and syntactic information about the given word or sub-word unit.



4.1 TEXT ENCODING 39

4.1.1 Text Preparation

We first concatenate the document text into one long string following the pattern ‘<t> Title 1 </t> Text

1 <t> Title 2 </t> Text 2...’, where ‘title 1’ refers to the title of the first document, and ‘text 1’ refers

to the text of the first document. For the rest of the model, the multiple documents are simply treated

together in this concatenated form. This allows multi-document reasoning to be approached identically

to single document reasoning at the cost of larger inputs. We then tokenize all our input text (document

and question) using the NLTK tokenizer (Bird and Loper, 2004), which turns our input data into a list

of words. We then construct a list of all tokenized words and characters that appear in our training text

and assign vectors for each word and character. For words, these vectors are assigned using pretrained

GloVe vectors (Pennington et al., 2014), while for characters, they are simply randomly generated.

Following the baseline model, we limit the size of our lists (our vocabulary size) to 2,200,000 words,

and 94 characters (with higher-frequency words and characters taking priority over lower-frequency

ones). This captures the vast majority of the characters and words present in the training text, with any

leftovers mapped to a special ‘UNK’ vector, which represents an unknown word. By using this special

token and character-level embeddings, the model can better reason about previously unseen words at test

time. In addition, these initialised vectors are trained during training, allowing our model to fine-tune

these word representations to best suit its task. Each GloVe vector has dimensionality 300 and each

character vector has dimensionality 8.

4.1.2 Text Encoding

With our text now represented by vectors, we add some additional processing to enrich the information

stored in each vector. First, we apply one-dimensional convolution to the character embeddings of

each word, and then utilise max-pooling to construct a single character-aware vector for each word.

Formally, if we have a sequence of n character embeddings [x0, x1, ..., xn] making up a single word and

a convolution kernel size of 2k + 1, then the character-aware word vector is constructed by:

x′i = f(W 8·(2k+1)×100 · x[i−k:i+k] + b),where i = 0 . . . n (4.1)

c = max([x′0, x
′
1, ..., x

′
n]) (4.2)
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Where c represents our character-aware word vector. Following the baseline model, we set k = 2.

We then concatenate c with the word embedding vector, and pass this through a single gated recurrent

unit (GRU) layer. The GRU is a recurrent cell that has similar performance, but lower computational

cost, than the popular long short-term memory (LSTM) cell (Hochreiter and Schmidhuber, 1997). It

processes a sequence step-by-step, utilising a hidden state as memory to identify dependencies between

items in the sequence. At each step, transformed representations of the item of the sequence input at

that step are produced, allowing us to enrich our word vectors with knowledge of their textual context

(including surrounding words, syntax, and so on). Formally, at timestep t, the GRU takes in the tth

item of a sequence xt, and previous hidden state ht−1, and outputs a single hidden state, which can be

used as the transformed representation of xt, and is input to the next step (assuming a hidden and input

dimension of d):

zt = σg(W
d×dxt +W d×dht−1 + b) (4.3)

rt = σg(W
d×dxt +W d×dht−1 + b) (4.4)

ĥt = tanh(W d×dxt +W d×d(rt � ht−1) + b) (4.5)

ht = (1− zt)� ht−1 + zt � ĥt (4.6)

We employ two GRU layers, one going forwards through the text sequence and one going backwards, to

allow our word vectors to be aware of their prior and future context. Our final encoded word vectors are

then formed by concatenating the outputs for the same word from the two directions. Formally, if we

have a sequence of n word vectors [x0, x1, ..., xn], then our final representation of the word at timestep

t, x′t is given by:

hft = GRUf (xt, h
f
t−1) (4.7)

hbt = GRUb(xt, h
b
t+1) (4.8)

x′t = [hft ;h
b
t ] (4.9)
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We use ‘GRU’ to represent the set of equations 4.3-4.6. As mentioned above, this encoding step is

applied in the same manner to the concatenated document text and question text, but using separately-

trained layers (i.e. the equations are the same, but the weights used are distinct). This means that

the document representations are not aware of the question representations, and vice-versa. Instead,

interactions between the context and documents are handled by our MAC cells, described below. By

utilising the above process, we have constructed representations of each tokenized word that are not only

possible to train with the rest of our model, but also that are aware of character-level and document-level

information, allowing our model to make use of multiple levels of linguistic information. The GRU

output encoding for each token has dimensionality 160 (that is, the dimensionality of the hidden GRU

states in the forward and backward passes is 80).

4.1.3 Question Summary Vector

Following Hudson and Manning (2018), we use a bidirectional LSTM model to construct the question

summary vector. LSTMs behave similarly to the GRU, but maintain two hidden states (ct, the cell state,

and ht, the hidden state) and use different set of equations at each step, given below (assuming hidden

and input dimension of d):

ft = σg(W
d×dxt +W d×dht−1 + b) (4.10)

it = σg(W
d×dxt +W d×dht−1 + b) (4.11)

ot = σg(W
d×dxt +W d×dht−1 + b) (4.12)

c̃t = σg(W
d×dxt +W d×dht−1 + bc) (4.13)

ct = ft ◦ ct−1 + it ◦ c̃t (4.14)

ht = ot ◦ σh(ct) (4.15)

Here, xt refers to the token embedding input at step t, while ct and ht refer to the cell state and hidden

state of the LSTM at timestep t, respectively. W , U and b refer to various weight matrices which are

learnt jointly with the rest of our model.

After encoding the question using a bidirectional LSTM layer, we concatenate the final hidden states

output by both LSTM directions to construct the final summary vector:
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cft+1, h
f
t+1 = LSTMf (xt, c

f
t , h

f
t ) (4.16)

cbt+1, h
b
t+1 = LSTMb(xt, c

b
t , h

b
t) (4.17)

q = [hfT ;h
b
0] (4.18)

Where LSTMf and LSTMb are the forward and backward LSTMs respectively, T is the number of

tokens in the question embedding, xt is the tth question token, and q is the final question vector. Similar

to the encoded text, this question vector has dimensionality 160.

4.2 Recurrent Memory, Attention, Composition (MAC) Cell

The core of our model is an adaption of the architecture proposed in Hudson and Manning (2018), which

performs multi-step reasoning using a recurrent cell: the memory, attention, composition (MAC) cell.

This cell is made up of three core units: the control unit, the read unit, and the write unit. As seen in

figure 4.2, each cell takes in and outputs two states: the control state, ci, which represents the reasoning

operation to be performed at step i, and the memory state, mi, which represents the intermediate answer

obtained from the previous i cell steps. We initialise the control state with the question vector q, and

the memory state with a learnt parameter vector. Below we describe the calculations performed by each

MAC cell in detail. All parameters in each unit except the position-aware parameters in equation 4.19

are shared between all MAC cells. Let d be the hidden state size of the MAC network (which equals 160

in our model).

4.2.1 Control Unit

The control unit takes in the previous control state and outputs a new control state by calculating an

attention distribution over all question words. Intuitively, this unit determines what reasoning operations

should be performed by the rest of the cell.



4.2 RECURRENT MEMORY, ATTENTION, COMPOSITION (MAC) CELL 43

FIGURE 4.2. Diagram of a MAC cell from Hudson and Manning (2018). ci and mi

represent the control and memory states at step i, while q and KB represent the encoded
question and knowledge base. ri represents the information extracted by the read unit
at step i.

First, we convert the question vector into a position-aware form, and combine it with the previous control

state:

qi = tanh(W d×dq + b) (4.19)

cqi =W 2d×d[qi; ci−1] + b (4.20)

We then calculate an attention distribution over each question word using the dot product between cqi

and each encoded token, and use this to construct the next control state:

cai,s =W d×d(cqi · cws) + b (4.21)

cvi,s = softmax(cai,s) (4.22)

ci =

S∑
s=1

cvi,s · cws (4.23)

Note that if the encoded tokens cw do not have dimensionality equal to the MAC hidden size d, we

simply linearly project them to have dimensionality d. Since b = d for our model, we do not have to do

this.
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4.2.2 Read Unit

The read unit then utilises the control unit’s output to retrieve information from the input document

relevant to the current reasoning operation.

First, the previous memory state is used to construct a memory-aware representation of the current

document, allowing the cell to discover information that might only be relevant in the context of a prior

reasoning step. This is then combined with the original document representation to allow the model to

consider information not directly related to the previous step:

Ii,h = (W d×dmi + b)� (W d×dKh + b) (4.24)

I ′i,h =W 2d×d[Ii,h;Kh] + bI (4.25)

In the original MAC cell design, this combined representation I ′ is then used to compute an attention

distribution by calculating a dot product between I ′ and ci, the current control state. While this worked

well for image-based representations, our experiments found that it performed poorly at identifying im-

portant information in the document representations. Instead, we utilise a modified form of bi-attention

from Jiang and Bansal (2019a), which combines the attention distribution output by the control unit with

the popular bi-attention layer proposed by Seo et al. (2017).

This bi-attention layer operates on a similarity matrix, M , in which each cell Msh represents the simi-

larity score between question token cws and document token I ′i,h:

Ms,h =W d×dus +W d×dI ′i,h +W d×d(us � I ′i,h) (4.26)

This similarity matrix is then used to calculate the ‘context to query’ attention, which summarises the

most important question words for each document word:

ps,h =
exp(Ms,h)∑S
s=1 exp(Ms,h)

(4.27)

cqh =
S∑

s=1

ps,hus (4.28)
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We then compute the ‘query to context’ attention. While the original bi-attention mechanism used max-

pooling over the question words cws to identify the most important question word, we instead use the

attention distribution calculated by the control unit, cvi,s. Thus, the query to context attention now

highlights the most important words in the context for the words in the query chosen by the control unit:

m′h = cvi,s ·Ms,h (4.29)

ph =
exp(m′h)∑H
h=1 exp(m

′
h)

(4.30)

qc =
J∑

j=1

phI
′
i,h (4.31)

Finally, we combine the different attentions flows together with I ′ to construct the final output for the

bi-attention layer, and shrink it down to the hidden size of the MAC cell:

h′j =W 4d×d[I ′h; cqh ; I
′
h � cqh ; cqh � qc] + b (4.32)

Intuitively, h′j is a question-aware representation of the input document focussed on the parts of the

question highlighted by the control unit. This is used as the output for the final MAC cell.

Finally, we compute an attention distribution over h′j to construct a summary vector of the information

retrieved by the read unit:

rai,h =W d×dh′j + b (4.33)

rvi,h = softmax(rai,h) (4.34)

ri =

H∑
h=1

rvi,h ·Kh (4.35)

ri is then passed to the write unit to construct the memory next state.
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4.2.3 Write Unit

The write unit merges the retrieved information ri and the previous memory state mi−1 to form the next

memory state mi. This is simply done by concatenating the retrieved information and control state and

passing it through a linear layer:

mi =W 2d×d[mi−1; ri] + b (4.36)

In addition, the control state can also be optionally integrated into the memory state at this point, which is

performed in the default MAC setup provided by Hudson and Manning (2018) (although not mentioned

in their paper). In this case, equation 4.36 becomes:

mi =W 3d×d[mi−1; ri; ci] + b (4.37)

Optionally, a gate can be applied to the memory state to allow the previous memory state and current

memory state to be merged. This gate utilises the control state to determine how much of the information

retrieved at the current cell step should be used for the final memory state:

mi = σ(c′i) ·mi−1 + (1− σ(c′i)) ·mi (4.38)

Intuitively, this allows cells to be ‘skipped’ if a question does not require every cell for its reasoning

process.

We utilise both the integration of the control state and the memory gate in our GloVe-based model.

4.3 Output Unit

Finally, we utilise the output from the final MAC cell to make our predictions. First, we take the question

summary vector q and final memory output mi, and concatenate the two to form an answer summary
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vector a. We then utilise a to make our prediction of whether the answer to the question is yes, no, or a

span:

a =W 2d×d[q;mi] + ba (4.39)

Ot =Wo1a+ bo1 (4.40)

predyns = softmax(Ot) (4.41)

If the answer is predicted to be ‘yes’ or ‘no’, we just output the given word as the answer. If the answer

is instead predicted to be a span, we follow the baseline model’s output process for predicting the start

and end indices of the answer span alongside with supporting facts (which are still predicted in the case

of a yes/no answer). This process goes as follows. First, we take the bi-attention output from the final

MAC cell and pass it through a self-attention layer to allow for prediction-specific processing and the

relocation of attention to the start and the end of the predicted answer span. We also provide a residual

connection to the pre-self-attention output. Formally:

out = h′j (4.42)

out1 = GRU(out) (4.43)

out2 = self-att(out1) (4.44)

out3 =W d×dout2 + b (4.45)

out4 = out+ out3 (4.46)

where h′j is the output from the bi-attention of the final MAC cell from equation 4.32. ‘self-att’ refers

to the self-attention mechanism, which is simply the bi-attention mechanism from Seo et al. (2017), but

with out1 as both inputs (i.e. in place of the question and document).

We then predict the supporting facts by passing this processed output through a bidirectional GRU and

constructing sentence embeddings by taking the hidden states from the start and end of the sentence,

identical to how we constructed the question summary vector. The summary vectors are then passed



4.3 OUTPUT UNIT 48

through a linear layer to conver them to logits, and transformed into probabilities using the sigmoid

function. Formally, the prediction for sentence i is formed by the following equations:

out′ = GRU(out4) (4.47)

si = [out′fi ; out
′b
i ] (4.48)

s′i =W d×1si + b (4.49)

predi = σ(s′i) (4.50)

Where out′f and out′b refer to the outputs from the forward and backwards GRUs respectively and σ

refers to the sigmoid function. We mark a sentence as a supporting sentence if predi is over 0.3.

Finally, we have to predict the span start and end indices. We first incorporate the supporting fact

prediction by concatenating the sentence logit s′i to each word in its respective sentence. That is, if word

j is in sentence i, then the output vector representing word j is modified as such:

out′j = [outj ; s
′
i] (4.51)

We then pass this modified output through a bidirectional GRU, and use the output to produce logits for

the start index. The output from the GRU layer is concatenated with the modified output and passed

into a second bidirectional GRU to produce logits for the end index. Both logits are passed through the

softmax function to produce normalised probabilities of each token being the start and end index:
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outs = GRU(out′) (4.52)

Os =W d×d · outs + b (4.53)

preds = softmax(Os) (4.54)

oute = GRU([out′, outs]) (4.55)

Oe =W d×d · oute + b (4.56)

prede = softmax(Oe) (4.57)

Finally, we take as answer the span that maximises the probability preds ∗ prede, with the constraint that

s ≤ e (i.e the start token must be before the end token). With this, we have all outputs of our model.

4.4 Loss

We calculate loss values for both answer and supporting fact predictions. First, we use cross-entropy

loss for training our yes/no/span, start index, and end index predictions. Formally, if we have cmutually-

exclusive classes, predicted probabilitiesP = [p0, p1, ..., pc], and ground-truth labelsG = [g0, g1, ..., gc],

where gi = 1 if class i is the ground truth answer, and gi = 0 otherwise, then cross-entropy loss is de-

fined as:

CE(G,P ) = −
i=c∑
i=0

gi · log(pi) (4.58)

Note that the probabilities P are commonly computed using the softmax function.

For supporting fact prediction, we cannot utilise this cross-entropy loss as multiple sentences may be

supporting facts, and we have no knowledge in advance of the number of supporting fact sentences. In

this case, we train each sentence prediction independently using binary cross-entropy loss. Formally,

if we have a predicted supporting fact probability si, and ground truth value yi (where yi = 1 if the

sentence is a supporting fact, and 0 otherwise), then the binary cross entropy loss is:
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BCE(yi, si) = yi · log(si) + (1− yi) · log(1− si) (4.59)

Note that the probabilities si are usually computed using the sigmoid function, as we have done above.

The final loss for our model during training is simply given by adding all our loss functions together:

L = CE(Gyns, predyns) + CE(Gs, preds) + CE(Ge, prede) + BCE(Gsent, S) (4.60)

Here G indicates the ground truth for a particular prediction, and S indicates all supporting fact predi-

cations. We ignore the start and end index loss (mask it to have value 0) when the ground truth answer

is ‘yes’ or ‘no’ since in those cases there is no ground truth answer span.

4.5 Optimisation and Training

We jointly optimise all trainable variables in our model using the above loss functions. Following the

baseline model, we use stochastic gradient descent (Robbins and Monro, 1951; Kiefer and Wolfowitz,

1952) with a learning rate of 0.1. We use a batch size of 24. We apply early stopping and learning rate

reduction during training: we evaluate our model every 1000 steps, and if the predicted answer F1 on

the development set is lower than a previous answer F1, we halve the learning rate. When the learning

rate reaches 1% of the original learning rate or lower, we stop training and use the model with the best

development set answer F1. We find these hyperparameters work best based on tuning experiments

performed in chapter 5.

4.6 Conclusion

In this chapter, we have introduced our initial GloVe-based model. This model utilises an augmented

MAC cell design to improve its multi-hop reasoning ability. The rest of the model utilises designs from

the HotpotQA baseline, thus ensuring that any improvement made by this model is derived from the

addition of the MAC cells.



CHAPTER 5

GloVe-based Model Evaluation Results

In this chapter, we evaluate and investigate the performance of our GloVe-based model using the methods

outlined in chapter 3. In addition, we explore a naive application of BERT to our model design and

investigate the utility of document selection in multi-hop QA.

5.1 Quantitative Evaluation

5.1.1 Performance

We first compare our model’s performance against other GloVe-based models. As our training method

involves tuning on a dev set, we include both comparisons against the entire dev set of HotpotQA’s

distractor setting (table 5.1), and then split the dev set in half to construct test and dev splits, and eval-

uate our model’s performance on this constructed test set after tuning on the constructed dev set (table

5.2). For both test and dev sets, our model significantly outperforms the baseline model and is compet-

itive with the Hotpot-NMN model. Despite the Hotpot-NMN model performing better in exact answer

matching, the similar answer F1 score indicates our model is just as good at ‘fuzzy matching’ the an-

swer, but simply less exactly precise. In addition, when removing the auxiliary supervision that the

Control + DocQA and Hotpot-NMN models get (‘- Bridge Sup’), our model significantly outperforms

both models, suggesting our model can learn multihop reasoning without requiring special supervision.

Furthermore, as our own model is simply the baseline model with the bi-attention layer swapped out for

MAC cells, its improved performance can largely be attributed to the presence of these cells.

We also explore the effect of the number of MAC cells on the performance of our model. While Hudson

and Manning (2018) report higher scores on the CLEVR dataset with more cells, the CLEVR dataset

differs from the HotpotQA dataset in that it contains questions requiring differing amounts of reasoning

steps, where HotpotQA questions always require only two reasoning steps (either the location of the

51
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Answer Supporting Fact Joint
Model EM F1 EM F1 EM F1
Baseline 44.44 58.28 21.95 66.66 11.56 40.86
Control + DocQA 47.68 - - - - -
-Bridge Sup 43.31 - - - - -

Hotpot-NMN 50.67 63.35 - - - -
-Bridge Sup 46.56 58.60 - - - -

Hotpot-MAC (ours) 48.82 63.59 23.52 66.44 13.54 44.57
TABLE 5.1. Performance of baseline-based MAC model compared with other GloVe-
based approaches on HotpotQA distractor dev set. Dashes indicate unreported scores
(as in the case of the Control + DocQA model) or that the model was unable to provide
the required outputs for those metrics (as in the case of the Hotpot-NMN, which does
not output supporting facts).

Answer Supporting Fact Joint
Model EM F1 EM F1 EM F1
Baseline 45.46 58.99 22.24 66.62 12.04 41.37
Hotpot-NMN 49.58 62.71 - - - -
-Bridge Sup 45.91 57.22 - - - -

Hotpot-MAC (ours) 49.01 63.81 23.41 67.90 13.10 45.21
TABLE 5.2. Performance of baseline-based MAC model compared with other GloVe-
based approaches on the HotpotQA distractor test set1. Note that the Control + DocQA
model does not evaluate on a test set, and so is left out of this comparison.

bridge entity and then the answer, or the location of the two relevant facts in the case of comparison

questions). Thus we hypothesise that only two MAC cells are required for good performance on Hot-

potQA. This hypothesis is upheld by table 5.3, which shows that 2 cells achieve above-baseline results,

and further cells either harm performance or provide minimal benefits. Interestingly, adding these addi-

tional cells seems to result in unstable performance, with 3 cells being below baseline performance and

4 and 5 cells being above. Thus we can see that for this task more MAC cells does not necessarily mean

improved performance.

Next, we investigate the performance of the Hotpot-MAC and baseline models on the previously-

discussed adversarial HotpotQA dataset (Jiang and Bansal, 2019a). We compare the baseline model

against the Hotpot-MAC model in table 5.4. Our 2-cell model clearly outperforms the baseline model

when trained on the regular HotpotQA training set, but struggles when trained on the adversarial training

1For our model, this is our constructed test set mentioned above. For Hotpot-NMN, this is a test set constructed in the
same way as ours. For the baseline model, this is the official HotpotQA distractor test set, which is not publicly available. All
sets are held out completely during the training of their respective models.
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Answer Supporting Fact Joint
Model EM F1 EM F1 EM F1
1 cell 37.43 50.65 5.93 37.84 2.69 22.16
2 cell 48.63 63.02 23.66 67.24 13.23 44.55
3 cell 41.36 55.38 15.88 56.58 8.16 33.76
4 cell 48.22 63.03 20.95 66.17 11.71 43.84
5 cell 48.82 63.59 23.52 66.44 13.54 44.57
6 cell 37.15 50.28 8.43 45.90 3.82 25.62
baseline 44.44 58.28 21.95 66.66 11.56 40.86

TABLE 5.3. Performance of Hotpot-MAC and baseline models on HotpotQA distrac-
tor dev set. ‘X cell’ refers to the Hotpot-MAC model using X sequential MAC cells.
Highest scores in each column bolded.

Train Set Reg Reg Adv Adv
Dev Set Reg Adv Reg Adv
Baseline 58.28 44.51 62.74 70.09
Hotpot-MAC (1 cell) 50.65 43.32 59.96 66.81
Hotpot-MAC (2 cell) 63.02 58.39 49.95 67.44
Hotpot-MAC (3 cell) 55.38 44.06 60.04 69.17
Hotpot-MAC (4 cell) 63.03 45.59 62.11 68.60
Hotpot-MAC (5 cell) 63.59 43.93 57.35 67.33
Hotpot-MAC (6 cell) 50.28 58.80 61.53 69.67

TABLE 5.4. Answer F1 of baseline and Hotpot-MAC model across a set of train and
development set combinations, using the regular HotpotQA and adversarial HotpotQA
distractor sets.

set, with more MAC cells either providing small benefits or worse performance (as before). We hypoth-

esise this is due to the nature of the adversarial dataset: by several fake reasoning paths, a Hotpot-MAC

model with only two cells may follow an incorrect path and as a result output the incorrect answer. Thus,

more cells are required to allow the model to follow multiple reasoning paths, with the fake reasoning

paths acting as noise the model finds difficult to ignore. However, the large gap in performance using

the regular training set suggests that the inductive bias of the MAC model does indeed encourage true

multi-hop reasoning, even when shortcuts are present in the underlying dataset. In fact, the performance

of the baseline model on the regular dev set when trained on the adversarial training set is still below

the performance of our Hotpot-MAC model trained on the regular set. Thus it is clear that while the

adversarial training set appears to harm the performance of our model, it is still able to learn strong

multi-hop reasoning abilities from the regular training set, and is more robust to the adversarial dev set

than the baseline model when trained without adversarial data. This strongly suggests the MAC cell

design carries a strong inductive bias for multi-hop reasoning.
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SQuAD v1.1 SQuAD 2.0
Model EM F1 EM F1
DocQA 72.03 80.73 61.00 63.61
Hotpot-MAC (2 cells) 71.39 80.47 60.53 63.43

TABLE 5.5. Comparison between DocQA model (Clark and Gardner, 2018) and our
model on SQuAD dev sets. DocQA results from our own implementation based on the
framework provided by Lee et al. (2019).

Finally, we compare the performance of our multi-hop model with the DocQA model on the SQuAD 1.1

and 2.0 datasets in table 5.5. For the SQuAD 2.0 dataset, which requires an extra no-answer prediction,

we utilise the same no-answer module as proposed for the DocQA model (Clark and Gardner, 2018).

We find that adding the augmented MAC cells in place of the regular bi-attention layer results in a small

drop in performance. These results are similar to those found in Clark and Gardner (2018), who similarly

find that their additions to the DocQA model to handle processing multiple paragraphs results in a small

performance drop on SQuAD. Therefore, it is clear that the MAC cells contain a strong inductive bias for

multi-hop reasoning rather than simply being better at general QA. Furthermore, for general single-hop

QA, these cells do not result in a large drop in performance, indicating that the MAC augmented model

still retains the vast majority of its regular question answering ability.

5.1.2 Ablations

We next investigate the contribution of each component of our Hotpot-MAC model on the overall per-

formance of the model by ablating each component and measuring the performance of the resulting

modified model.

F1 SP F1 J F1
Hotpot-MAC 63.02 67.24 44.55
- control 64.12 66.70 45.27
- self-attention 54.07 45.87 26.97
- bi-attention 50.22 35.30 20.59
- token output 52.92 37.11 22.19

(a) Ablations on regular data.

F1 SP F1 J F1
Hotpot-MAC 67.44 63.10 43.56
- control 65.43 64.63 43.51
- self-attention 52.80 46.84 26.57
- bi-attention 64.25 45.15 31.09
- token output 63.94 43.86 30.40

(b) Ablations on adversarial data.

TABLE 5.6. Ablations on the Hotpot-MAC model on the regular and adversarial Hot-
potQA distractor dev set. See section 5.1.2 for details on each ablation. ‘F1’, ‘SP F1’,
and ‘J F1’ refer to answer F1, supporting fact F1, and joint F1 respectively.
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We perform ablation experiments using both the regular and adversarial training and development sets,

training and testing on the same-paired sets (i.e. reg/reg and adv/adv). The results of our ablation

experiments on the regular and adversarial datasets are shown in table 5.6. The ablation setups listed in

both tables are as follows:

• - control: Removing the control unit from the MAC cell, and replacing the control-based

bi-attention with regular bi-attention.

• - self-attention: Removing the self-attention layer placed after the MAC cells.

• - bi-attention: Removing the control-based bi-attention and using the basic control state -

knowledge base interaction in the read unit, as in Hudson and Manning (2018).

• - token output: Using the final memory vector ml as output from the MAC cells, and taking a

product between it and the encoded context to highlight the answer location found by the MAC

cells before answer prediction.

As we can see, the use of bi-attention is clearly crucial to the modified MAC cell, with its removal

causing a significant drop in performance. Furthermore, using just the memory vector as the final output

(‘- token output’), as done for multiple-choice datasets, also results in a drop in performance. We

hypothesise this is because the compressing of the answer text into a single vector is a challenging and

difficult task for the model, especially when it then has to re-locate answer candidates for the final output

in texts with well over 1000 tokens. We also note the self-attention layer used in the model appears to

generally aid performance and particularly aids in the noisy adversarial scenario, where the model must

be able to identify and discard multiple possible answer candidates from fake reasoning paths. Especially

intriguing is the removal of the control unit, which appears to provide a boost in performance in the

regular setup. This suggests that our model is struggling to take advantage of the compositional nature

of the questions in HotpotQA, which further examination of the attention maps produced by the control

unit also suggest (see section 5.2.2). However, the control unit does seem particularly useful for the

adversarial dataset, suggesting the control unit aids with more difficult multi-hop reasoning. As found

in Jiang and Bansal (2019b) and Jiang and Bansal (2019a), it is likely that adding auxiliary supervision

to train to the control unit would allow the model to make better use of it. Our preliminary experiments

found this did not result in greatly improved performance, however.

Thus, while the use of bi-attention in the MAC cell is clearly crucial to its performance, the control

unit appears less useful, potentially requiring stronger training to make use of its ability to break down

a question. We note that the control state and unit share similarities to query reformulation techniques
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used elsewhere in multi-hop QA (Das et al., 2019; Feldman and El-Yaniv, 2019; Shen et al., 2017),

which has been previously shown to provide only small improvements in performance (Wang et al.,

2019c). As such, while the MAC cell clearly is overall highly useful for multi-hop reasoning, further

work is likely required to make good use of the control state.

5.1.3 Parameter Tuning

We investigate if the learning rate or optimizer of the Hotpot-MAC model can be further tuned by

optimizing over learning rates and testing the performance of the widely-used Adam optimizer (Kingma

and Ba, 2015). As shown in figure 5.1, we find that the original learning rate and optimiser used by the

baseline model (SGD optimiser with a learning rate of 0.1) performs best. As such, we used the same

learning setup as the baseline model in all the above experiments (with the exception of the SQuAD

experiments, for which we copy the setup from the original DocQA paper).

Training Step

A
ns

w
er

 F
1

0

25

50

75

100

5000 10000 15000 20000 25000 30000

lr = 0.5 lr = 0.1 lr = 0.05 lr = 0.01 Adam, lr = 0.001

FIGURE 5.1. Answer F1 on HotpotQA distractor dev set against training steps for vari-
ous hyperparameter setups. ‘lr’ stands for learning rate. All runs use the SGD optimiser
unless otherwise noted in the legend. Lines stop where training ceased based on opti-
misation scheme outlined in section 4.5.
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Bridge Comparison (np) Comparison (p)
# Questions 5918 1029 458

F1 SP F1 J F1 F1 SP F1 J F1 F1 SP F1 J F1
Baseline 57.08 61.45 37.76 53.35 73.42 39.95 60.48 80.29 50.37
Hotpot-MAC (2-cell) 64.63 63.90 44.17 56.04 77.99 44.53 59.61 81.62 50.02

TABLE 5.7. Performance of GloVe-based models broken down by question type on
HotpotQA distractor dev set. ‘np’ and ‘p’ stand for ‘non-polar’ and ‘polar’ respectively.
‘F1’, ‘SP F1’, and ‘J F1’ refer to answer F1, supporting fact F1, and joint F1 respec-
tively.

5.2 Qualitative Evaluation Results

In this section, we investigate the behaviour of our model by examining what types of samples it per-

forms well with and struggles with. We also examine the interpretability of our model by examining its

attention maps and compare this with the interpretability of the baseline model. In doing so, we gain a

greater understanding of the strengths of our models and identify potential areas for future improvement.

5.2.1 Sample Breakdown

First, we investigate our model’s performance across different sample types in HotpotQA. We break

down the samples in three ways: by question type, by answer type, and by context length.

First, we examine how well our model does on each question type. As discussed in chapter 3, HotpotQA

contains two major question types: bridge, which requires finding some bridge entity to find an entity

or property of some entity, and comparison, which requires comparing two entities. We further distin-

guish between polar (yes/no) and non-polar comparison questions based on the ground truth answer to

the given question. As noted in chapter 3, there are far more bridge questions than comparison ques-

tions in HotpotQA, and so we hypothesise that our model will perform better on bridge questions than

comparison due to the extra training it receives for bridge questions.

This hypothesis is upheld by the results in table 5.7, which clearly shows the Hotpot-MAC model per-

forms best on bridge-style questions, while still outperforming the baseline on non-polar comparison-

type questions. Interestingly, our Hotpot-MAC model outperforms the baseline far more on bridge-style

questions than comparison questions. We suggest this is due to the strong inductive bias of the MAC

cells lending itself more to bridge questions (where you locate a bridge entity, then use that informa-

tion to locate the answer) than comparison questions (where you have to retrieve two different facts and
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FIGURE 5.2. Training steps against answer F1 for Hotpot-MAC model on HotpotQA
distractor dev set, split by question type.

Baseline Hotpot-MAC
Actually Correct 10 12
Commonsense 4 2
Discrete Reasoning 10 12
Mislabel 2 3
General 36 46
Multi-hop 36 22
No Answer 2 2
Superspan 0 1

TABLE 5.8. Number of errors made by baseline and Hotpot-MAC model from a sample
of 100 errors from HotpotQA distractor dev set. See Appendix A for details on the error
types.

combine them in memory). As we saw in the previous section, this inductive bias is strong for multi-hop

questions, and this shows it seems to be strongest for bridge-style multi-hop questions. Furthermore,

the relative scarcity of comparison questions in the dataset may also mean the model struggles to learn

how to deal with them as well as bridge questions - as we can see in figure 5.2, it is only after some

time that our model starts predicting bridge questions better than comparison questions. An additional

comparison of the number of different types of errors made by the baseline and Hotpot-MAC model

from 100 random samples in table 5.8 shows that our model makes fewer errors in multi-hop reasoning,

providing further evidence that the MAC cell has a strong inductive bias for multi-hop reasoning.



5.2 QUALITATIVE EVALUATION RESULTS 59

# Questions Baseline Hotpot-MAC
Number 23 71.26 67.00
Date 27 68.20 66.34
Group 27 46.19 65.19
Artwork 16 66.07 75.00
Person 73 59.35 68.86
Event 6 33.15 52.97
Location 54 58.04 57.24
Adjective 9 68.15 51.83
Proper noun 27 62.25 56.40
Common noun 15 21.26 25.49
Yes/No 21 61.91 66.67
Mislabel 2 0.00 6.67

TABLE 5.9. Answer F1 for different answer types for our GloVe-based models on Hot-
potQA distractor dev set.

Next, we examine the performance of our model based on answer type, using the annotated answers

described in chapter 3. As seen in table 5.9, our model largely outperforms the baseline at answers that

are entity names (artworks, company names, people’s names, event names, etc.), while under-performing

compared to the baseline at other answer types, such as those involving numbers and adjectives. We

again hypothesise this is due to the design of the MAC network: the sequential cell design is likely best

at linking entities from one part of the text to another part, rather than the discrete or numerical reasoning

required by some questions.

Finally, we examine the effect of context length on the performance of our model. Dealing with long

text is a challenge for many NLP models, including the state-of-the-art. Furthermore, unlike current

BERT-based state of the art models, which often use a document selection step to shrink the input to

their core question answering models, both the baseline and our baseline-based model take in all ten

documents in the distractor setup concatenated together. As such, it is well worth examining the effect

of these larger text sizes on our model.

As seen in figure 5.3, both the baseline and our model exhibit similar behaviour with context length:

they are largely robust to increasingly long contexts until around 12000 characters, at which point they

completely collapse. This is likely due to the relative scarcity of such long contexts in the dataset:

as seen in figure 5.4, contexts longer than 10000 characters are uncommon in the HotpotQA training

data. Thus, it is clear that neither the baseline nor Hotpot-MAC model struggle with the extremely long

contexts present within the HotpotQA setup.
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FIGURE 5.3. Context length against answer F1 for baseline and Hotpot-MAC models
on HotpotQA distractor dev set. Datapoints constructed by rounding all context lengths
to nearest 1000 and averaging F1 of points with same rounded length. Note that bins
are not necessarily of the same size.
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FIGURE 5.4. Histogram of context lengths in the HotpotQA distractor setting training set.

Thus, we have shown that our novel model design specifically carries a strong inductive bias for bridge-

type multi-hop questions, while still demonstrating strong performance on comparison questions. Fur-

thermore, it makes fewer multi-hop errors than the baseline model, and is robust to context length, with

little degradation in performance when processing long contexts.
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5.2.2 Attention Maps

One of the potential benefits of the MAC architecture is increased interpretability through the attention

maps generated by each cell. Hudson and Manning (2018) show when introducing the MAC network

that interpretable attention maps naturally arise when training on the CLEVR dataset. However, we

find that such interpretable maps do not appear in our Hotpot-MAC model, although examining these

maps still provides some insight on the interior workings of the model. We visualise the control attention

(attention distribution over the question words calculated in the control unit) and read attention (attention

distribution over the context words calculated in the read unit).

We visualise the attention maps of several questions from the HotpotQA dev set, with the full attention

maps (along with question ids) given in appendix B. Darker colors indicate higher attention values

and thus more ‘importance’ given to that word in a given MAC cell unit. We first note that while the

control attention maps do change across cells, they do not always follow an intuitive path. For example,

comparison questions do not seem to iteratively focus on the entities in the questions:

Control Attention Question ID 5a8b57f25542995d1e6f1371

Cell #1: Were Scott Derrickson and Ed Wood of the same nationality ?

Cell #2: Were Scott Derrickson and Ed Wood of the same nationality ?

While we would expect the model to iteratively focus on the two names (‘Scott Derrickson’ and ‘Ed

Wood’), it never focuses on ‘Ed Wood’. Examining the read unit attention maps further shows the model

focusing on nationalities (mainly ‘American’) in both cells, providing little indication of a reasoning

process.

Similarly, when examining bridge questions, we do not find entirely intuitive attention maps, although

the reasoning performed by the model is made somewhat clearer:

Control Attention Question ID 5abd94525542992ac4f382d2

Cell #1: 2014 S / S is the debut album of a South Korean boy group that was formed by who ?

Cell #2: 2014 S / S is the debut album of a South Korean boy group that was formed by who ?
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While the reasoning path here is opposite to what we would expect , as it first focuses on ‘formed

by who’, and then the album name, it is still clearer than in the comparison question example above.

Examining the attention maps of the read unit for this sample further displays the reasoning path taken

by our model: first, the various companies that form South Korean boy groups are highlighted, and

then after considering evidence from the rest of the question, the answer (‘YG entertainment’) is further

highlighted with more confidence than other potential answers2:

Read Attention Question ID 5abd94525542992ac4f382d2

Cell #1: <t> List of awards and nominations received by Shinee </t>. . . The group was formed

by S.M. Entertainment in 2008 . . . <t> Cho Kyuhyun </t> Cho Kyu - hyun ( born February

3 , 1988 ) , better known mononymously as Kyuhyun . . . a former member of the South

Korean ballad group S.M. the Ballad . . . . 2014 S / S is the debut album of South Korean

group WINNER . It was released on August 12 , 2014 by the group ’s record label , YG

Entertainment . . . . a South Korean boy group formed by LOEN Entertainment in 2013 .

. . . Winner ( Hangul : 위너 ) , often stylized as WINNER , is a South Korean boy group

formed in 2013 by YG Entertainment and debuted in 2014 . . . . Madtown ( Hangul :

매드타운 ) , often stylized as MADTOWN , is a South Korean boy group formed in 2014 by

J. Tune Camp . The group consists of Moos , Daewon , Lee Geon , Jota , Heo Jun , Buffy. . .

Cell #2: <t> List of awards and nominations received by Shinee </t> . . . The group was formed

by S.M. Entertainment in 2008 . . . <t> Cho Kyuhyun </t> Cho Kyu - hyun ( born February

3 , 1988 ) , better known mononymously as Kyuhyun . . . a former member of the South

Korean ballad group S.M. the Ballad . . . . 2014 S / S is the debut album of South Korean

group WINNER . It was released on August 12 , 2014 by the group ’s record label , YG

Entertainment . . . . a South Korean boy group formed by LOEN Entertainment in 2013 .

. . . Winner ( Hangul : 위너 ) , often stylized as WINNER , is a South Korean boy group

formed in 2013 by YG Entertainment and debuted in 2014 . . . . Madtown ( Hangul :

매드타운 ) , often stylized as MADTOWN , is a South Korean boy group formed in 2014 by

J. Tune Camp . The group consists of Moos , Daewon , Lee Geon , Jota , Heo Jun , Buffy. . .

2Note above we have removed sections of the text with low attention values to improve legibility. The full attention map
can be found in appendix B.
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FIGURE 5.5. Heatmap of unnormalised logits from attention matrix of question-
context bi-attention layer in baseline model for several questions from HotpotQA. To-
ken indices rather than text given for legibility, and logit values clipped to the range
[-15, 15]. Question IDs given below each heatmap.

While these attention maps are not entirely interpretable, we now compare them to the attention maps

produced by the baseline. As the baseline makes use only of bi-attention, a standard way of visualising

this is via displaying the attention matrix that underlies both the query to context and context to query

attention mechanisms. However, the long texts in HotpotQA make this attention matrix hard to under-

stand. For example, we show the full bi-attention matrix for three samples in figure 5.5 - it is difficult to

parse at a glance here what words are important, let alone even space out each context word such that

they are readable. This stands in contrast to the MAC cell’s more readily interpretable attention, where

only one value is associated with every word, as we have seen above.
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However, we better can visualise part of the baseline’s attention matrix by ‘flattening’ the attention

matrix and showing which document words are considered most salient in the query to context attention,

which shows which document words are most relevant to the question (see chapter 4 for more details):

Question ID 5abd94525542992ac4f382d2

Question-Context Attention: <t> 2014 S / S </t> 2014 S / S is the debut album of South

Korean group WINNER . It was released on August 12 , 2014 by the group ’s record label

, YG Entertainment . The members were credited for writing the lyrics and composing the

majority of the album ’s songs . <t> History ( band ) </t> History ( Korean :히스토리 ) was

a South Korean boy group formed by LOEN Entertainment in 2013 . They debuted on April

26 , 2013 with " Dreamer " , featuring the narration of their labelmate IU . They were LOEN

Entertainment ’s first boy group . They officially disbanded on May 12 , 2017 . <t> Winner

( band ) </t> Winner ( Hangul :위너 ) , often stylized as WINNER , is a South Korean boy

group formed in 2013 by YG Entertainment and debuted in 2014 . It currently consists of

four members , Jinwoo , Seunghoon , Mino and Seungyoon . Originally a five - piece group

with Taehyun , who later departed from the group in November 2016 . <t>

Context-Context Self-Attention: <t> 2014 S / S </t> 2014 S / S is the debut album of South

Korean group WINNER . It was released on August 12 , 2014 by the group ’s record label

, YG Entertainment . The members were credited for writing the lyrics and composing the

majority of the album ’s songs . <t> History ( band ) </t> History ( Korean :히스토리 ) was

a South Korean boy group formed by LOEN Entertainment in 2013 . They debuted on April

26 , 2013 with " Dreamer " , featuring the narration of their labelmate IU . They were LOEN

Entertainment ’s first boy group . They officially disbanded on May 12 , 2017 . <t> Winner

( band ) </t> Winner ( Hangul :위너 ) , often stylized as WINNER , is a South Korean boy

group formed in 2013 by YG Entertainment and debuted in 2014 . It currently consists of

four members , Jinwoo , Seunghoon , Mino and Seungyoon . Originally a five - piece group

with Taehyun , who later departed from the group in November 2016 .

Note above we truncated the above text to just supporting documents (and one extra). As we can see,

the attention from the baseline model is much noisier, and as such, it is much harder to determine the

reasoning paths taken by the model. It is also important to note that this visualisation only displays half
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the bi-attention mechanism. Visualising the context to query attention, where an attention distribution is

calculated over the question word for every context word, would require a 2D heatmap similar to figure

5.5.

Thus, while the MAC cell is certainly not as interpretable with this task when compared to VQA, it

certainly improves over the baseline model, providing much sparser and thereby more interpretable

attention maps, even if the reasoning processes followed are not entirely intuitive. Training the model to

follow specific reasoning paths, as done in Jiang and Bansal (2019a), may aid in further interpretability.

5.3 Utilising BERT

5.3.1 A Naive Approach

While our model performs well with GloVe-based embeddings, its performance lags greatly behind the

current state-of-the-art, which relies on BERT (and BERT-like) pretrained models for high performance

(Asai et al., 2020; Fang et al., 2020; Tu et al., 2020; Qiu et al., 2019; Dhingra et al., 2020). We first in-

vestigate BERT integration by simply replacing the GloVe and character-based embeddings with BERT,

keeping the rest of the model the same (i.e. replacing the purple modules in figure 4.1 with BERT). As

BERT cannot process all 10 documents in the distractor setting at once, we utilise a pretrained document

selection model from the SAE model (Tu et al., 2020), which ranks and selects the top two documents

at test time. We concatenate the two chosen documents along with the question and pass them through

BERT to generate contextually-aware embeddings for both the question and documents.

We also design a naive BERT baseline model by utilising the supporting fact prediction design from the

HotpotQA baseline for supporting fact prediction. This utilises the hidden outputs from the final BERT

layer to perform supporting fact prediction and predicts the answer location directly from BERT’s hidden

outputs (whilst also using the SAE document selection model to reduce the input to BERT). For both

the MAC and baseline BERT-based models, we utilise the Adam optimiser with a learning rate of 10−5,

using the same learning rate reduction strategy as the GloVe model. We compare these two models with

both GloVe-based and other BERT-based models in table 5.10.

As we can see, while using BERT provides a large boost across all metrics compared to the GloVe-

based models, it appears that MAC network adds little to no boost over the already powerful reasoning

ability of BERT. Further augmentations to the MAC network, including extra supervision on locating
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Answer Supporting Facts Joint
Model EM F1 EM F1 EM F1
HotpotQA Baseline* 44.44 58.28 21.95 66.66 11.56 40.86
Hotpot-MAC (2 cell)* 48.63 63.02 23.66 67.24 13.23 44.55
BERT Baseline 60.08 74.26 60.32 86.28 40.30 66.61
Hotpot-MAC + BERT (2 cell) 60.49 74.66 59.92 86.35 40.66 66.85

+ bridge sup. 60.58 75.01 59.97 86.32 40.51 67.12
+ 8 cells 60.41 74.64 60.54 86.61 40.96 67.06

SAE (Tu et al., 2020) 61.32 74.81 58.06 85.27 39.89 66.45
HGN (Fang et al., 2020) - 74.26 - 86.61 - 66.90
TABLE 5.10. Performance of MAC model with BERT alongside our BERT baseline
and state-of-the-art models for HotpotQA distractor dev set. Models marked with *
use GloVe for text encoding, while all other models use BERT-base-uncased. Dash
indicates scores not available.

the bridge entity3 (‘+ bridge sup’ in table 5.10) or using 8 cells instead of 2 (‘+ 8 cells’ in table 5.10),

seem to provide little to no benefit over the baseline. Examining the attention cells of these MAC

cells shows that the cells only focus on the predicted answer (or bridge entity, if trained to detect the

bridge entity), further suggesting that they are simply ‘passing on’ the predictions of the BERT model

rather than performing reasoning themselves. However, with the bridge supervision, we are able to an

achieve answer F1 score slightly above the current state of the art in HotpotQA, suggesting that this

extra supervision does bring some benefit, albeit small, potentially due to it more directly encouraging

multi-hop reasoning within the model, thereby making it easier for the model to find the correct answer.

We also note in table 5.10 that the existing state-of-the-art on HotpotQA does little to improve on our

naive BERT baseline, suggesting that the extra methods used by these approaches ontop of BERT add

little to the performance of the overall models. This is especially true for the SAE model, which utilises a

complex graph-based model for predicting supporting facts that under-performs our simple GRU-based

supporting fact predictor. This matches the findings of Shao et al. (2020), who find that the graph meth-

ods utilised in the DFGN model are largely unnecessary when correctly fine-tuning BERT. We note that

this behaviour may not hold for larger pretrained models such as RoBERTa-large, which models such as

the HGN appear to provide some (small) performance boosts over. Ultimately, however, it is clear that

the most important parts of all these models are the document selection step (since incorrect document

3This extra supervision is performed by training the first of the two MAC cells to output the start location of the bridge
entity, which is detected via the same method as Jiang and Bansal (2019b) - if the title of the answer document is in the title of
a supporting document, that is marked as the bridge entity. If the answer appears in both supporting documents, we check if
the title of one exists in the other and use that title. If we cannot detect a bridge entity, we do not train the bridge detection on
that sample.



5.3 UTILISING BERT 67

Answer Supporting Facts Joint
EM F1 EM F1 EM F1

BERT baseline 61.89 76.34 64.42 89.77 42.78 69.92
- separately encoded 61.55 (-0.37) 76.00 (-0.34) 61.97 (-2.45) 88.85 (-0.92) 41.00 (-1.78) 68.76 (-1.16)
Hotpot-MAC + BERT 61.63 76.18 64.39 89.95 42.70 69.74
- separately encoded 61.30 (-0.33) 75.66 (-0.52) 62.73 (-1.66) 89.23 (-0.72) 41.23 (-1.47) 68.58 (-1.16)

TABLE 5.11. Performance of BERT baseline and Hotpot-MAC with BERT on Hot-
potQA distractor dev set when utilising jointly encoded documents and separately en-
coded documents (‘-separately encoded’). Input documents are gold documents as an-
notated in the HotpotQA dataset. Hotpot-MAC model uses 2 cells.

Answer Supporting Facts Joint
EM F1 EM F1 EM F1

BERT baseline 60.08 74.26 60.32 86.28 40.30 66.61
- separately encoded 59.62 (-0.46) 73.90 (-0.36) 58.07 (-2.25) 84.54 (-1.74) 38.68 (-1.62) 65.52 (-1.09)
Hotpot-MAC + BERT 60.49 74.66 59.92 86.35 40.66 66.85
- separately encoded 59.39 (-1.10) 73.56 (-0.36) 58.58 (-1.34) 85.77 (-0.58) 38.65 (-2.01) 65.33 (-1.52)

TABLE 5.12. Performance of BERT baseline and Hotpot-MAC with BERT on Hot-
potQA distractor dev set when utilising jointly encoded documents and separately en-
coded documents (‘-separately encoded’). Input documents are documents selected by
the SAE mechanism. Hotpot-MAC model uses 2 cells.

selection naturally harms downstream performance) and the underlying pretrained BERT model, with

other aspects of these models adding at best minimal performance improvements.

5.3.2 Can MAC and BERT Work Together?

Given that the MAC cell is unable to add much performance over BERT when applied in a naive way,

we explore one potential method to force the MAC cell to perform multi-hop reasoning with BERT: we

process each document separately with BERT4, and then concatenate the outputs and pass them through

our augmented MAC cells to predict the answer location. We compare this with a basic model where

the documents are processed separately with BERT and then concatenated and passed directly to answer

prediction layers. We provide the performance of these two models on the gold document set (i.e. only

the documents annotated in the HotpotQA dataset as required for answering a given question) and the

SAE selected document set in tables 5.11 and 5.12 respectively.

4We still process each document concatenated with the question with BERT in order to provide rich question-aware
representations of the input documents, as we found separate processing of the question and document performed relatively
poorly.
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Answer Supporting Facts Joint
EM F1 EM F1 EM F1

RoBERTa-large 69.80 83.39 67.54 90.99 49.53 76.75
- separately encoded 67.28 (-2.52) 81.34 (-2.05) 65.28 (-2.26) 90.23 (-0.76) 45.86 (-3.67) 74.24 (-2.51)
Hotpot-MAC + R-L 69.42 83.12 67.45 91.07 49.07 76.58
- separately encoded 67.01 (-2.41) 80.94 (-2.18) 65.16 (-2.29) 90.09 (-0.98) 45.82 (-3.25) 73.85 (-2.73)

TABLE 5.13. Performance of RoBERTa-large-based models on HotpotQA dev distrac-
tor set when using joint and separate document encoding. Only gold documents are used
in evaluation and training. ‘R-L’ is short for ‘RoBERTa-large’.

Notably, removing the joint encoding results in lower performance across the board, with especially

large drops in supporting fact performance, suggesting that cross-document encoding aids in locating

relevant facts for the answer. This is likely due to the fact that supporting sentences include those that

link entities across documents, which is naturally difficult to determine when the two documents are

separately encoded. Utilising MAC cells for reasoning across the documents seems to help slightly,

reducing the drop that comes from separately encoding documents, but still does not perform as well as

the BERT baseline with jointly encoded documents. However, the answer-only metrics, especially F1,

only suffer smaller drops in performance when not jointly encoding documents, indicating that locat-

ing the answer to a given question does not require cross-document reasoning for strong performance.

These results are in line with Wang et al. (2019c), who show a similarly small boost from adding cross-

document reasoning on top of jointly encoded documents. Furthermore, these results support the claims

of Min et al. (2019) and Jiang and Bansal (2019a), who show that the HotpotQA dataset contains lexical

shortcuts that can be exploited by models to avoid multi-document reasoning. Both works suggest fix-

ing the dataset by adding stronger distractor documents, requiring the model to be better at selecting the

relevant documents for answering the question. However, our results show that given strong document

selection, there is little benefit from cross-document reasoning, suggesting that existing complex meth-

ods for multi-hop QA, which often involve first selecting two documents and then constructing complex

graph networks, rely far more heavily on that initial (and often under-examined) document selection step

than the rest of the design.

However, as seen in table 5.13, we find that the gap in performance between separate and joint encoding

is much larger when using the RoBERTa-large model (Liu et al., 2019), with further analysis showing

this gap largely arises from joint encoding performing far better (+ 6 points in answer F1) at non-

polar comparison questions. This makes sense: only through joint encoding would the model be able

to compare and select the two entities in question. Such comparison questions, though, can actually
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be ‘solved’ through document selection as well: if a model is able to select the document containing

the answer entity alone, it will naturally then provide the correct answer. Adding MAC cells does not

change this behaviour, nor does it provide a boost in performance. Ultimately, this analysis shows

that existing models only utilising BERT rely more heavily on document selection methods than their

complex graph-based designs, and only larger BERT-like models are actually able to gain substantial

improvements utilising joint encoding. Thus, we now turn our focus to utilising the MAC cell design for

document selection, since we have shown it provides little benefit in the naive designs explored above.

5.4 Conclusion

In this chapter, we have thoroughly examined the performance and behaviour of our GloVe-based model.

We have shown that it performs significantly above the existing HotpotQA baseline and is competitive

with other modular approaches that utilise extra supervision in training, and that our design can be

applied to single-hop QA datasets with minimal decrease in performance, despite not being design for

this task. In addition, we have explored the behaviour of our model, showing that it provides a strong

inductive bias for bridge-type questions and contains more readily interpretable attention maps than the

existing baseline model. This all provides strong evidence for the utility of MAC cells in multi-hop

QA. Finally, we examined a naive application of BERT to our model design and showed that while

BERT-based models do not benefit from MAC cells, they also do not effectively utilise cross-document

reasoning, instead relying heavily on an initial document selection step. In the next two chapters, we

thus explore a method for utilising MAC cells for document selection, making use of the strengths of

the MAC cell and BERT models showcased in this chapter.



CHAPTER 6

BERT-based Model

In this chapter, we introduce our BERT-based model, which integrates the document selection and an-

swer location steps of a multi-hop QA model by utilising the memory of a MAC cell to iteratively select

documents, ending with the answer document and prediction. This model design focuses on using the

strengths of the MAC cell for the task of document selection, which we have shown is core to compet-

itive performance in multi-hop reasoning. Unless otherwise stated, we utilise the ‘bert-base-uncased’

model available within Huggingface’s transformers library (Wolf et al., 2019) when referring to a ‘BERT

model’. However, our design is agnostic to choice of underlying pretrained language model, so long as

hidden representations can be output for each token along with a document summary vector. This allows

us to easily swap in more performant models such as ALBERT (Lan et al., 2020) or RoBERTa (Liu et al.,

2019) in place of BERT without modifying the rest of our architecture.

This model retains the same three steps as the GloVe-based model, but the nature of each step is different:

• Encoding unit: A BERT model is used to encode the documents (concatenated with the ques-

tion). The model is also used to generate dense summary vectors of each document for scoring.

Finally, we generate a question summary vector using a self-attention mechanism.

• Recurrent Memory, Attention, Composition (MAC) Cell: We expand the MAC cell to first

rank and score documents before then choosing the highest-ranked one to read. This is per-

formed iteratively, with the final cell output being passed to the output unit. We experiment

with using beam search to expand the search space of the cells. In addition, each cell also now

directly predicts supporting facts.

• Output unit: Finally, we use the outputs from the final MAC cell to predict an answer and

output a reranking score, used with beam search to allow the model to explore multiple answers

and choose the most likely answer out of those explored.

We provide a high-level diagram of our BERT-based model in figure 6.1.

70
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FIGURE 6.1. High-level architecture diagram of our BERT-based model.

6.1 Encoding Unit

6.1.1 Text Preparation

Before feeding text into BERT, we must construct a string utilising a special format that BERT was

trained to expect. For question answering, this format is: ‘[CLS] Question [SEP] Document [SEP]’,

where [CLS] and [SEP] are special tokens used for classifying and separating sequences respectively.

Rather than concatenate all documents together, we construct a string of this format for each document

and pass each one through the BERT model separately. This is due to the fact that BERT’s input size

limitations and computational complexity means encoding extremely long texts (such as all the provided

documents concatenated together) is infeasible.

6.1.2 Wordpiece Tokenisation

We next split our text into individual tokens, which we will map to vectors. Rather than simply splitting

on whitespace, we utilise the wordpiece algorithm (Wu et al., 2016), which splits the text into sub-word

units. For example, the first few lines of book 7 of the Odyssey would be split (or ‘tokenised’) as such:
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‘So noble long-suffering Odysseus lay there, conquered by weariness and sleep’

so, noble, long, -, suffering, o, ##dy, ##sse, ##us, lay, there,

‘,’, conquered, by, wear, ##iness, and, sleep

Note that as part of the tokenisation process, we also lower-case all text. Tokens that are not the start

of a new word are prefixed with ‘##’. Rather than use a custom list of tokens to split every word into,

we use the list of 30,000 tokens constructed in Devlin et al. (2019), which has proven effective for

general English-based NLP tasks. By splitting every word into sub-word units, our model can handle

previously unseen words by simply splitting them into text chunks it has seen before, thus still making

use of information learnt during training. If this is not possible, the word (or sub-word unit) is instead

mapped to a special token, ‘UNK’, which represents an unknown token. Use of the UNK token is rare

but does occur when in some cases, e.g. when dealing with non-English text. In addition, we also

mark which tokens belong to the question and which belong to the document using a binary vector,

wherein ‘0’ indicates the token belongs to the question and ‘1’ indicates it belongs to the document.

This vector, called a segment embedding, allows BERT to better distinguish between the two sequences

of text (Devlin et al., 2019).

As we wish to perform batch processing with our model (i.e. train it on multiple queries at once), we

have to pad out the tokenized text such that all text within one batch has the same length. We do this

by simply appending a special token ‘[PAD]’, onto the end of each tokenized sequence until they are all

the length of the longest sequence in the batch. We mark the location of these padding tokens for use

throughout our model to ensure that padding tokens are not given any weight, as they contain no useful

information for our task at hand.

Finally, we add positional encodings to our model. As BERT is a purely attention-based model, it has

no native notion of sequence order (unlike a recurrent neural network). We thus inject positional infor-

mation via learnt embeddings. The positional encodings are simply summed with the word embeddings

(the vectorised tokens) and given by a mixture of sine and cosine functions:

PE(pos,2i) = sin(pos/100002i/dmodel) (6.1)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (6.2)

Where pos is the token position and i is the dimension we are providing a value for.
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FIGURE 6.2. An encoder block from the standard transformer architecture, from
Vaswani et al. (2017).

6.1.3 Transformer-based Encoding

Finally, we encode our embedded text using a series of pre-trained transformer encoder blocks. A

transformer encoder block (Vaswani et al., 2017) consists of two key components: a multi-head attention

mechanism, and a simple feed-forward layer. In addition, both components utilise layer normalisation

(Ba et al., 2016) and residual connections (He et al., 2016) to aid training and stability. An overview of

a transformer encoder block is given in figure 6.2.

The first component of the block, multi-head attention, is simply several self-attention mechanisms

applied in parallel in order to allow the model to jointly attend to multiple aspects of the input text at

once. Formally, if we have a sequence X = [x0, x1, ..., xn] then multi-head self-attention is as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6.3)

Qi =WQ
i ·X (6.4)

Ki =WK
i ·X (6.5)

Vi =W V
i ·X (6.6)

headi = Attention(Qi,Ki, Vi) (6.7)

MultiHead(X) = [head0, head1, ..., headh] ·Wh (6.8)
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Where h is the number of ‘heads’ in the multi-head attention mechanism and dk is the dimensionality

(size) of each item in X (this scaling effect has empirically been found to aid in avoiding exploding

gradients). The second component of the block, a feed-forward layer, is simply two linear layers with a

ReLU (Nair and Hinton, 2010) activation between them:

ReLU(x) = max(0, x) (6.9)

FFN(x) = ReLU(x ·W1 + b1) ·W2 + b2 (6.10)

The layer normalisation step applied after each component is simply the normalisation of each item in

X using learnt scaling factors γ and β. Formally, if we have xi ∈ X , where xi is a D-dimensional

vector, then it is normalised as such:

µi =
1

D

D∑
d

= 0xi (6.11)

σ2i =
1

D

D∑
d

= 0(xi − µi)2 (6.12)

x′i =
xi − µi√
σ2i + ε

(6.13)

x′′i = γx′i + β (6.14)

= LayerNorm(xi) (6.15)

Where x′′i is our output value and ε is a small value to avoid division by 0. Layer normalisation is used

to avoid exploding or diminishing hidden values in recurrent neural networks, as it re-normalises values

at each step in the network.

Thus, putting it all together, a transfomer encoder block with input sequence X is formally given by:
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A = MultiHead(X) (6.16)

A′ = LayerNorm(X +A) (6.17)

L = FFN(A′) (6.18)

out = LayerNorm(L+A′) (6.19)

There are two main BERT variants (Devlin et al., 2019), utilising different numbers of stacked encoder

blocks, heads, and hidden dimensions:

• BERT-base utilises 12 blocks, 12 heads, and has a hidden dimension of 768.

• BERT-large utilises 24 blocks, 16 heads, and has a hidden dimension of 1024.

In addition to these two models, there exist other BERT variants, usually differentiated by their training

mechanisms. We also utilise the RoBERTa (Liu et al., 2019) model, which shares the same architecture

as BERT but utilises a better-designed pre-training scheme. Like BERT, it comes in base and large

variants.

6.1.4 Transformer Output

After passing our encoded text through BERT, we have for each input document a contextually encoded

representation of the question and document. We first construct a single set of question word embed-

dings by averaging the values across each encoding of the question. We then project the document and

question embeddings from the dimensionality of the BERT model (768 for BERT-base-uncased) to that

of the MAC model (512 for our base model) using a simple linear layer1. Finally, we extract the em-

bedding produced for the ‘[CLS]’ token (added in the text encoding step) for each document, and use

this as a ‘document embedding’ - a single vector representation of each document. We also shrink these

document embeddings to have dimensionality 512 with a single linear layer.

1A linear layer here is defined as Linear(x) = W d×b · x+ b, where W and b are learnable weight and bias parameters, d
is the input dimensionality, and b is the output dimensionality.
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FIGURE 6.3. Our augmented MAC cell design for our BERT-based model.

6.1.5 Question Summary Vector

We swap out the LSTM-based method from the GloVe-based model with a self-attention mechanism

(Zhong et al., 2019), used elsewhere in modular approaches to HotpotQA (Jiang and Bansal, 2019b).

Removing the recurrent LSTM layer previously used for this provides a small speed-up when running

our model, and empirically we found does not change the overall performance of the model. If we

have question embeddings [x0, x1, ...xQ] (where Q is the number of tokens in the question), then the

self-attention mechanism that produces question vector q is:

ai = softmax(tanh((W · tanh(xi) + b))) (6.20)

q =

i=Q∑
i=0

xi ∗ ai (6.21)

This question summary vector shares the same dimensionality as the shrunken word embeddings. This

means that the question summary vector has dimensionality 512 in our base model.
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6.2 MAC Cell

The design of our MAC cell remains similar to the design presented in chapter 4, with two notable

augmentations: a document selection unit and a supporting fact unit. The document selection unit

simply ranks the input documents and picks one for the cell to read, passing it to the read unit. The

supporting fact unit simply uses the output from the read unit and a GRU layer to make supporting fact

predictions for the chosen document. Other units in the MAC cell retain the exact same functionality

as discussed in chapter 7. We always only use two cells, as HotpotQA is designed such that only two

documents are used to answer any given question. We provide an overall diagram of this design in figure

6.3.

6.2.1 Document Selection Unit

The document selection unit is responsible for selecting the document to be passed to the rest of the MAC

network. This is performed in a manner similar to Asai et al. (2020), using the control and memory states

of the MAC cell to rank documents. We first project the document CLS embeddings, control state, and

memory state using linear layers:

d′i =W d×ddi + b (6.22)

c′j =W d×dcj + b (6.23)

m′j−1 =W d×dmj−1 + b (6.24)

Where di is the document embedding of the ith document, d is hidden dimensionality of the MAC cell

(512 for our base model). cj and mj represent the control and memory states of the jth MAC cell

respectively. Note we use the memory state output by the previous MAC cell here as the next memory

state will be constructed from the document selected by this unit.

We then calculate interactions between each state and the document embeddings by performing element-

wise multiplication and then concatenate these interactions together with the original embeddings. We

pass this concatenated form through a linear layer and sigmoid function to produce a score for each

document, representing the probability of selecting this document at this step.
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cdi = c′j ∗ d′i (6.25)

mdi = m′j ∗ d′i (6.26)

si = σ(W d×1[d′i; cdi;mdi] + b) (6.27)

We take the most likely document and pass it into the read unit, which operates as described in chapter

4.

6.2.2 Supporting Facts Unit

The supporting facts unit is responsible for predicting supporting facts from the output of the read unit,

predicting which sentences support the final answer. This unit simply adapts the baseline method for

supporting fact prediction: we pass the output from the read unit through a bidirectional GRU layer,

and then use the output to construct sentence embeddings that are then scored to determine which are

supporting facts.

out′ = GRU(out) (6.28)

si = [out′fi ; out
′b
i ] (6.29)

s′i =W d×1si + b (6.30)

predi = σ(s′i) (6.31)

Where out′f and out′b refer to the outputs from the forward and backwards GRUs respectively. We mark

a sentence as a supporting sentence if predi is over 0.5 (although this threshold can be further tuned to

maximise performance).

6.2.3 Other Unit Changes

In addition to the two units added to our design, we make some additional minor changes to the MAC

network itself: we do not utilise the memory gate nor integrate the control state into the memory in the

write unit as done in the GloVe-based model (see section 4.2.3 for details on these components).
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6.3 Output Unit

Our output unit is similar to the GloVe-based model discussed in chapter 4, but made simpler. We

first predict yes/no/span in an identical manner: we concatenate the question summary vector and final

memory state, and then use a linear layer with a softmax activation function to make the prediction.

Then, for span-based answering, we take the output from the last MAC cell and pass it through two

linear layers to predict the start and end location of the answer in the chosen document, similar to how

question answering is performed in a vanilla BERT model (Devlin et al., 2019).

s =W d×1out+ b (6.32)

e =W d×1out+ b (6.33)

spred = argmax(softmax(s)) (6.34)

epred = argmax(softmax(e)) (6.35)

Where out is the output from the final MAC unit and spred and epred are the predicted start and end

locations of the answer respectively. By removing the recurrent GRU layers used in the GloVe-based

model, we speed up the runtime of our model with no detected cost to performance (since BERT already

provides incredibly strong processing capabilities). Similarly, removing the self-attention layer used in

the GloVe-based model reduces the size of the model with no detected cost to performance.
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FIGURE 6.4. A diagram of how beam search operates in our model.
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6.3.1 Beam Search

As the most likely document sequence may not match the most likely answer prediction, we investigate

using beam search at inference time over the chosen documents. This means that at each document

selection step in the MAC cell, we split the model’s prediction process into k parallel paths (k is called

the ‘beam width’), where each path represents a different document being selected. After two MAC

cells, we then output a result as above and predict the likelihood of the chosen documents by each cell

being correct. This allows us to then rank each prediction process based on this final score, outputting

the answer of the top-ranked process. We provide a diagram of this process in figure 6.4. By default, we

do not use this mechanism (i.e. by default, we use a beam width of 1).

The score for each prediction process is calculated in the output unit by passing the concatenation of the

final memory state and question vector through a two-layer multi-layer perceptron.

score =W d×1(elu(W d×dqm))) (6.36)

Where qm is the concatenated question and memory vectors, and ‘elu’ is the ELU activation function

(Clevert et al., 2016).

6.4 Loss and Training

We utilise the same loss functions as the GloVe-based model, with two additions. First, we calculate the

binary cross-entropy loss for the document predictions made by the document selection unit. Secondly,

we use the reranking loss from Burges et al. (2005) for training the reranking component when using

beam search:

Lrank(si, sj) = [yi − σ(si, sj)]2 (6.37)

Where si and sj are two reranking scores calculated by the model from two different documents, and

yi = 1 if si is the score for a correct document path2, and 0 otherwise. During training, we force our

2i.e. a path that ends on the correct answer document after going through the other supporting document. The correct
answer document is always the one that contains the answer text, and if both documents contain the answer text, we determine
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model to take particular document paths (i.e. overriding its next document predictions). We generate

scores for three paths: the correct path, the correct path but flipped, and a randomly-generated incorrect

path (where the final document is not the answer document). We then calculate the reranking loss

between the correct path score and the two incorrect path scores. If the flipped path is still correct (e.g.

when the answer appears in both supporting documents, or when the answer is yes/no), we simply mask

the loss between it and the ‘correct’ path to avoid confusing our model. Apart from the reranking loss,

all other losses are only calculated when using the ‘correct path’.

6.5 Optimisation

We use the Adam optimiser (Kingma and Ba, 2015) with a learning rate of 5e−5 and halve the learning

rate when the answer F1 score does not improve. We train the model for 4 epochs, which we empirically

found to always be enough for the model to achieve optimal performance.

6.6 Conclusion

In this section, we have introduced our BERT-based model in detail. This model utilises a novel doc-

ument selection unit to iteratively choose and read documents, integrating the reading and document

selection steps often performed separately in other models. By iteratively reading documents and writ-

ing important facts to its hidden memory state, the MAC cell is able to better select documents and

determine the answer to a given question. Furthermore, this model can easily be trained end-to-end by

training on automatically detected correct document paths during training. We also introduce a beam

search mechanism that allows our model to investigate multiple document paths at inference time if

necessary. This approach thus merges the strengths of BERT and MAC into one model.

if the title of one document appears in the other. If so, the document whose title appears in the other is set as the answer
document. If not, we set one of the documents randomly as the answer document. We similarly set a random order for yes/no
questions, as this answer can be output independent of chosen document.



CHAPTER 7

BERT-based Model Results

In this chapter, we explore the performance and behaviour of our document selection-focused BERT-

based model design. We perform similar analyses as those performed for our GloVe-based model, with

some differences.

7.1 Quantitative Evaluation

7.1.1 Performance

We first evaluate the performance of our document selection-focused MAC model and compare it against

other BERT-based models. Similar to our GloVe-based approach, we compare both just using the dev

set and using a test set split from the original dev set (which is completely held out during training). We

compare against other models on the dev set in table 7.1, and against other models on the test set in table

7.2.

As we can see, while our design is slightly below the performance of the SAE and HGN models, it is

competitive with the recurrent retriever, which utilises a similar document selection method but with a

Answer Supporting Facts Joint
EM F1 EM F1 EM F1

Doc. Sel. MAC (ours) 59.04 73.38 58.49 85.18 39.00 65.34
BERT baseline 60.08 74.26 60.32 86.28 40.30 66.61
RR 59.40 73.30 57.40 84.60 - -
SAE 61.32 74.81 58.06 85.27 39.89 66.45
HGN - 74.76 - 86.61 - 66.90

TABLE 7.1. Performance comparison of document selection MAC with other BERT-
based models on the HotpotQA distractor dev set. RR refers to the recurrent retriever
model (Asai et al., 2020) referred to in chapter 3. Dash indicates scores unavailable or
not reported.

82
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Answer Supporting Facts Joint
EM F1 EM F1 EM F1

Doc. Sel. MAC (ours) 58.71 72.68 58.82 85.27 39.37 64.85
BERT baseline - - - - - -
SAE 60.36 73.58 56.93 84.63 38.81 64.96

TABLE 7.2. Performance comparison of document selection MAC with other BERT-
based models on HotpotQA distractor test sets. Note that the HGN and RR models do
not report BERT-based scores on the HotpotQA distractor test set. Test set used for
SAE is the official HotpotQA distractor test set.

Answer Supporting Facts Joint
EM F1 EM F1 EM F1

Doc. Sel. MAC, K = 1 59.04 73.38 58.49 85.18 39.00 65.34
- hidden state doc. sel. 36.19 47.13 0.00 58.24 0.00 28.78
- control state 58.53 72.92 58.15 85.44 38.49 64.97
- control biattn 58.81 72.92 58.46 85.21 38.99 64.90
- memory in read 58.64 73.00 58.46 85.22 38.57 64.99
+ beam search, K = 5 58.62 73.08 56.79 84.41 37.85 64.61
+ beam search, K = 10 57.30 71.63 47.41 80.30 32.38 60.82

TABLE 7.3. Ablation results on HotpotQA distractor dev set for document selection
based MAC. See section 7.1.2 for details on each ablation. K refers to beam width for
the beam search component.

dedicated separate reader model. This shows the efficacy of document selection: our document selec-

tion design is able to achieve results competitive with a model with a dedicated BERT reader module.

Furthermore, we see that our document selection model is still able to achieve supporting fact scores on

par with the SAE model, again showing the complex graph methods used by the SAE model are largely

unnecessary compared to our simple GRU-based approach.

Note that we do not test single-hop datasets with this model, since there is no document selection process

required for such datasets. As the majority of the modifications made by our model are for better

document selection, this means on the single hop setting our model is roughly equivalent to a baseline

BERT model.

7.1.2 Ablations

Next, we investigate the effect of various components of our design with the ablations shown in table

7.1.2. The ablations we test are:
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• -hidden state doc. sel.: We remove the use of the memory and control state for document

selection, and instead just directly use the CLS tokens from the BERT model encoding for

ranking at each step.

• -control state: We remove the use of the control state in the document selection and write unit

and use of the control-based bi-attention in the read unit.

• -biattn: We remove the control-based bi-attention layer in the read unit.

• -memory in read: We remove the integration of the memory vector with the knowledge base in

the read unit. This effectively means our answer span prediction is performed without knowl-

edge of prior documents in the final cell.

• + beam search, K = 5: We utilise the beam search component described in section 6.3.1, with

a beam width of 5.

• + beam search, K = 10: We utilise the beam search component with a beam width of 10.

Based on these ablations, we can see that the beam search component only hurts the overall performance

of the model, despite the effectiveness of beam search-based reranking in open-domain QA (Asai et al.,

2020). We believe this is due to the distractor documents in the distractor setting being easy enough to

distinguish from others, given they are chosen using just TF-IDF overlap (Yang et al., 2018), rather than

specifically being chosen to distract the powerful BERT model. With this, the model is generally able to

distinguish the correct supporting documents most of the time. However, we can see the hidden memory

state is vital in our model for better document selection and higher performance. This is likely due to

the information uncovered in previous documents aiding the document selection process in the case of

bridge questions, which are explicitly crafted for this sort of reasoning. Finally, we see that the control

state and bi-attention provide only small benefits, indicating the model is largely not utilising the control

unit, similar to the GloVe-based model.

7.1.3 Parameter Tuning

7.2 Qualitative Evaluation Results

We now examine the behaviour of this BERT-based model, applying similar analyses as those performed

for the GloVe-based model. These provide further insight into the performance of the model and expose

future directions for research on multi-hop QA.
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Bridge Comparison (np) Comparison (p)
# Samples 5918 1029 458

F1 SP F1 J F1 F1 SP F1 J F1 F1 SP F1 J F1
BERT Baseline 74.86 85.30 66.59 68.96 89.59 63.87 78.38 91.47 72.93
Doc. Sel. MAC 73.65 83.95 64.93 66.83 90.42 62.16 81.00 93.89 76.74

TABLE 7.4. Performance of BERT-based models broken down by question type on
HotpotQA distractor dev set. ‘np’ and ‘p’ stand for ‘non-polar’ and ‘polar’ respectively.
‘F1’, ‘SP F1’, and ‘J F1’ refer to answer F1, supporting fact F1, and joint F1 respec-
tively.

7.2.1 Sample Breakdown

We first examine the performance of our BERT-based design on the different question types in HotpotQA

in table 7.4. Interestingly, while the document selection model is unable to achieve above baseline per-

formance in bridge questions, it is much stronger at comparison questions and especially strong at polar

comparison questions. This is likely because polar comparison questions do not require proper document

selection to find the answer (since the model has a dedicated yes/no/span prediction module). Hence,

the difficulty of selecting the correct answer document does not result in a decrease in a performance for

these questions. We also hypothesise that the direct use of memory vector for these question types pro-

vides stronger guidance on the memory state of the MAC cells, and thus on what information the MAC

cells should be reading from each document. This would explain the relatively poor performance of our

model on non-polar comparison questions, for which the model still has to predict the answer location,

meaning the memory vector is only indirectly trained to carry information required to locate the final

answer. The reduced performance on bridge questions is likely due both to the difficulty of selecting the

correct answer-containing document (Wang et al., 2019c) and the small reduction in performance that

occurs when not jointly encoding documents that we showed in section 5.3.2.

Next, we examine the performance of our document selection model by examining its performance

across different answer types in table 7.5. Notably, the model performs quite well across a set of different

answer types but does not perform well for the most common answer type: a person’s name (‘person’).

This suggests that the model is still able to reason about different types of entities quite well, but struggles

to achieve better performance for some of the more common answer types in HotpotQA.

Examining the types of errors made by our document selection models in table 7.6, we see that our

model suffers more from document selection errors, in which the model has failed to find the correct

answer document. This suggests that improving the document selection mechanism of our model could
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# Questions BERT Baseline Doc. Sel. MAC
Artwork 16 93.75 100.00
Date 27 85.77 84.66
Adjective 9 70.27 81.20
Yes/No 21 76.19 80.95
Group 27 74.94 79.26
Location 54 70.48 74.82
Number 23 74.74 72.90
Person 73 76.91 72.74
Proper noun 27 74.57 65.93
Event 6 67.04 64.54
Common noun 15 38.09 53.08
Mislabel 2 5.56 5.56

TABLE 7.5. Answer F1 for different answer types for our BERT-based models, based
on a sample of 300 questions from HotpotQA distractor dev set.

BERT Baseline Doc. Sel. MAC
Actually Correct 18 18
Commonsense 4 4
Discrete Reasoning 13 7
Mislabel 7 5
General 23 14
Multi-hop 18 22
Incorrect Doc. Sel. 17 30

TABLE 7.6. Number of errors made by BERT-based model from a sample of 100 er-
rors. See Appendix A for details on the error types.

potentially lead to vastly improved performance. Furthermore, the greater proportion of multi-hop er-

rors further suggests that the model is unable to integrate information from across different documents

well. This gives further evidence that our model is unable to make good use of the memory vector for

communicating information across documents.

Finally, we examine the accuracy of our document selection module. Unlike previous approaches, which

choose a set of documents and then allow a reader model access to the entire set at once, our model is

order-sensitive: the document chosen by the final cell must contain the answer (if the answer is not

yes/no), as otherwise it will be impossible for the model to predict the correct answer (since it simply

selects text from the final document as its answer). As such, we examine not just the accuracy of the

model in selecting the two supporting documents, but also its accuracy in selecting the correct answer

document. As seen across tables 7.7 and 7.8, our model is almost perfect at selecting documents for

comparison questions, but struggles more with bridge questions, and particularly struggles at finding the
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Bridge Bridge (both) Comp (p) Comp (np) All
Any 1 document correct (unordered) 99.57 99.46 100.00 99.90 99.62
Both documents correct (unordered) 88.26 86.82 99.56 98.45 90.09
First document correct (ordered) 90.16 - - 71.82 82.42
Second document correct (ordered) 88.62 - - 71.91 81.22
Both documents correct (ordered) 84.43 - - 71.53 77.93

TABLE 7.7. Percentage of correct selected documents split by question type as chosen
by the document selection MAC. ‘Bridge (both)’ refers to bridge questions which have
the answer text in both supporting documents. Dashes indicate scores that would not
make sense to record, as those question types allow any document order.

Bridge Bridge (both) Comp (p) Comp (np) All
Any 1 document correct (unordered) 99.73 99.80 99.13 99.42 99.66
Both documents correct (unordered) 91.06 90.60 98.25 97.18 92.26

TABLE 7.8. Percentage of correct selected documents split by question type as chosen
by the SAE document selection method. ‘Bridge (both)’ refers to bridge questions
which have the answer text in both supporting documents.

correct answer document for non-polar comparison questions. These results largely match our intuition:

comparison questions are easier to select documents for as the relevant entities are usually directly

named in the question, while bridge questions often require selecting answer documents which are non-

obvious when looking just at the question. Furthermore, the low document selection performance for

non-polar comparison questions is due to the fact that selecting the correct document for these questions

is tantamount to choosing the correct answer, since each potential answer is in a different document (and

so choosing a document means the model must choose that potential answer as its predicted answer).

Comparing our method to the SAE method, we note that we achieve better performance on selecting

comparison documents, but far worse on selecting bridge documents. We believe this performance gap

is due to the more sophisticated training mechanism of the SAE, and its use of a more powerful BERT

model (BERT-WWM-large as compared to BERT-base1). Thus our document selection method is clearly

promising, but requires further work.

7.2.2 Attention Maps

Finally, we examine the attention maps produced by each MAC cell. As the document selection MAC

only processes one cell at a time, visualising the attention maps produced by the read and control units

is much simpler, involving less text. We find that these attention maps are surprisingly interpretable

1Tu et al. (2020) do not mention using this model, but the code provided with their paper uses this larger BERT model.
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in the case of bridge questions, clearly highlighting the bridge entity, although the control attention is

less interpretable, as seen below. Note that the examples below utilise BERT-base-uncased tokenisation,

which converts all text to lowercase before tokenising. As this tokenisation scheme breaks words up into

sub-parts, we prepend ‘##’ to sub-parts of words to indicate they are not the start of a new word.

Question ID 5abd94525542992ac4f382d2

Cell #1

Control: 2014 s / s is the debut album of a south korean boy group that was formed by who ?

Read: < t > 2014 s / s < / t > 2014 s / s is the debut album of south korean group winner . it

was released on august 12 , 2014 by the group ’ s record label , y ##g entertainment . the

members were credited for writing the lyrics and composing the majority of the album ’ s

songs .

Cell #2

Control: 2014 s / s is the debut album of a south korean boy group that was formed by who ?

Read: < t > winner ( band ) < / t > winner ( hangul : [UNK] ) , often stylized as winner , is a south

korean boy group formed in 2013 by y ##g entertainment and debuted in 2014 . it currently

consists of four members , jin ##wo ##o , se ##ung ##ho ##on , min ##o and se ##ung ##yo

##on . originally a five - piece group with tae ##hy ##un , who later departed from the group

in november 2016 .

In this example, it is clear when looking at the read unit attention the model first focuses on finding the

band name (‘Winner’) before then focusing on the formation of the band in the second article. However,

the control unit attention does not seem to follow, focussing on the album name in the second cell,

where this information is not useful for finding the answer. We find that other bridge questions similarly

show this pattern of more interpretable read unit attention, but less useful control attention2. In contrast,

comparison questions show little in the way of interpretable reasoning processes in both their control

and read attention maps:

2We provide further attention maps from the HotpotQA dev set in Appendix C.
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Question ID 5a8b57f25542995d1e6f1371

Cell #1

Control: were scott derrick ##son and ed wood of the same nationality ?

Read: < t > scott derrick ##son < / t > scott derrick ##son ( born july 16 , 1966 ) is an american

director , screenwriter and producer . he lives in los angeles , california . he is best known

for directing horror films such as " sinister " , " the ex ##or ##cis ##m of emily rose " , and "

deliver us from evil " , as well as the 2016 marvel cinematic universe installment , " doctor

strange . "

Cell #2

Control: were scott derrick ##son and ed wood of the same nationality ?

Read: < t > ed wood < / t > edward davis wood jr . ( october 10 , 1924 – december 10 , 1978 )

was an american filmmaker , actor , writer , producer , and director .

As we can see in the above example, the control unit attention shifts little across the two cells, and

despite the question asking about nationality, the nationalities of the two filmmakers have no attention

paid to them in the read unit. This is likely due to the powerful pre-processing of BERT: as it creates

contextual word embeddings, it is highly likely that the information about the nationalities of the two

filmmakers has already been spread and integrated into the representations of other tokens within the

text. Furthermore, as the final answer text is the name of one of the filmmakers, the model itself learns

during training to pay more attention to the names, rather than the attributes being examined to answer

the question. This highlights the perils of using BERT: while we can get some seemingly fairly inter-

pretable attention maps, the large size of BERT means that it can effectively shift information to any

token it pleases with minimal effect on the answer predictions we make. The very nature of contex-

tual representations is what allows this: by allowing words to contain information about their context,

we naturally lose the ability to pinpoint the exact contribution that singular word has on an answer.

However, the fact that the read unit of our document selection model highlights bridge entities without

being trained to suggests that in this case it is exposing some information about the reasoning process

underlying the model, and so still can aid a user in determining why the model has made a particular

prediction.
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Thus, while the attention maps of the document selection model still leave something to be desired, we

have seen that they are still quite promising, with interpretable qualities arising without being specifically

trained into the model. Furthermore, the document selection process and ‘one cell, one document’

paradigm makes visualising these attention maps far simpler than in the case of the GloVe-based models,

where we had to visualise large amounts of text at once.

7.3 Conclusion

In this chapter, we have thoroughly explored the performance and behaviour of our BERT-based, docu-

ment selection-focused model design. While this model is not quite state-of-the-art, it performs incredi-

bly well on non-polar comparison questions and provides interpretable attention maps which expose its

underlying reasoning process. Furthermore, our model slightly outperforms a strong existing ‘read and

retrieve’ baseline, the recurrent retriever. Thus, while our model has some shortcomings, we believe it is

an effective and interesting design, with several clear potential future research directions for improving

its performance and interpretability.



CHAPTER 8

Conclusion

8.1 Future Work

In this work, we have explored the problem of multi-hop QA by utilising MAC cells, a novel design orig-

inally applied to visual question answering that carries a strong inductive bias for multi-hop reasoning.

While we have focused on an extractive setup, where the model must extract an answer from input text,

future work could examine multiple-choice setups such as WikiHop (Welbl et al., 2018), which require

slightly different answer mechanisms but are still compatible with MAC cell-based approaches. Further-

more, we have not thoroughly investigated the utility of graph-based representations of text, which have

proven effective in certain scenarios (De Cao et al., 2019; Fang et al., 2020). This shows there are two

clear avenues for further research with our model design: either through expanding the design to utilise

different QA designs or through applying the design to other tasks and setups.

In addition, we have shown that the distractor setting of HotpotQA relies heavily on document choice,

rather than specific reader components. This suggests researchers should control for document selection

methods in future work, since it is currently unclear whether strong approaches are strong due to their

document selection or document reading model. This suggests that the distractor models have much

to learn from the full-wiki setting of HotpotQA, where document selection is often the main problem

being examined. Future work could also examine creating stronger QA datasets for which document

selection is less effective - for example, ensuring documents have multiple potential answers that can

only be disambiguated by referring to a secondary (or more) document(s).

Finally, we note that the interpretable aspects of the MAC cell are less effective in the context of text-only

tasks, where contextual representations and large inputs make effectively identifying which core words

are contributing to a particular answer more difficult than in computer vision tasks. Future work could

examine how to improve this interpretability, which can potentially be achieved via further supervision
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during training, restricting modules to communicate only via interpretable text, or better integration of

supporting facts supervision into the cell design itself. Further examination of the information written to

the memory and control states via the use of probing tasks or toy datasets would also aid in uncovering

how our MAC networks reason, and aid in measuring how faithful the attention maps produced in the

read and control units are to the actual underlying reasoning process of our networks.

Thus, while we have shown that MAC cell-based designs are promising for multi-hop QA, there are still

many potential areas for improvement and research on these models.

8.2 Contributions and Conclusion

We conclude by summarising the four major contributions we have made in this work:

(1) We adapted the MAC network to machine reading comprehension, bringing a popular image-

based model to a text-based task.

(2) We showed this adapted model provides strong performance compared to existing modular

approaches, whilst also being more interpretable and applicable to non-multi-hop datasets with

minimal loss in performance.

(3) We showed that good performance on HotpotQA, a highly popular multi-hop dataset, revolves

around good document selection methods, which are largely under-examined in the distractor

setting.

(4) We designed a multi-hop model that can achieve competitive performance on HotpotQA pri-

marily through its document selection. This model joins the strengths of the MAC and BERT

models, using MAC cells to pick and read documents, and a BERT model to produce rich

contextual representations of the question and input documents.

In this work, we have thus provided a thorough exploration of MAC cells and multi-hop reasoning,

showcasing the multiple ways MAC cells are useful for multi-hop QA. We have shown that MAC cells

carry a strong inductive bias for multi-hop reasoning and can outperform existing modular approaches

on HotpotQA, while also generalising to adversarial and single-hop QA datasets. In addition, we have

shown that current approaches to the HotpotQA distractor setting largely on a relatively under-examined

document selection step. Finally, we designed a competitive that jointly selects and reads documents,

combining MAC cells with a BERT model in an interpretable manner. We hope this work inspires
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further research into designing multi-hop datasets that require strong cross-document reasoning and

further research into applying modular networks to text-based tasks.
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APPENDIX A

Error Types

In this section we provide descriptions of the error types we use to classify errors across this work

(particularly tables 5.8 and 7.6).

• Actually Correct: The answer proposed by the model is correct, although it does not match

the ground-truth label. This can occur when the predicted answer is a different grammatical

form (e.g. singular vs plural), or simply a different answer that is still correct (in the case when

a question has multiple potential answers).

• Commonsense: The answer can only be found using knowledge external to provided docu-

ments. For example, some questions in HotpotQA require prior knowledge that certain US

states are north of or south of other states.

• Discrete Reasoning: The answer can only be found using discrete reasoning, which includes

counting and number comparison. This includes questions such as ‘Who is older?’ or ‘Who

has more albums?’.

• Multi-hop: The model has failed to perform multi-hop reasoning, which is indicated by it ei-

ther predicting the bridge entity as the answer instead of the actual answer, or by following a

wrong (but plausible) bridge entity to a wrong answer. This also includes cases when compar-

isons are incorrectly made, as this indicates the model has failed to find and compare disjoint

facts.

• Superspan: The model has predicted a span of text containing the correct answer. This gen-

erally only occurs when the model is unable to produce the exact answer due to incorrect

tokenisation.

• No Answer: The model produced no answer for this question. For the GloVe-based model this

only occurs when the input text is too large to process (over 2250 tokens, in our case).

• Mislabel: The ground truth label is incorrect, and so no plausible answer will be marked as

correct in the F1 or EM metrics.
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• General: A general error which does not fit in an above group. This is a catch-all category,

and usually indicates the model has genuinely misunderstood either the question or underlying

text in some way.

• Incorrect Doc. Sel.: The selected documents were incorrect, meaning the model does not have

enough information required to predict the correct answer (and in most cases this means the

answer text itself is not present in the selected documents).



APPENDIX B

GloVe-based Model Attention Maps

In this appendix we provide full attention maps of 4 sample questions from our 2-cell GloVe-based

model. Colour indicates attention values, with darker red indicating higher attention values. Questions

are referred to by their HotpotQA ID.

B.1 Maps for Question 5abd94525542992ac4f382d2

Cell #1

Question: 2014 S / S is the debut album of a South Korean boy group that was formed by who ?

Documents: <t> List of awards and nominations received by Shinee </t> South Korean boy

group Shinee have received several awards and nominations for their music work . The group

was formed by S.M. Entertainment in 2008 and released their first full - length album , " The

Shinee World " , on August 28 , 2008 , which won the Newcomer Album of the Year at the 23rd

Golden Disk Awards . The first single released from the album was " Sanso Gateun Neo ( Love

Like Oxygen ) " and won first place on " M Countdown " on September 18 , 2008 making it

the group ’s first win on Korean music shows since debut . Their second album " Lucifer " (

2010 ) produced two singles , " Lucifer " and " Hello " . For their outstanding choreography the

group was nominated for the Best Dance Performance Award at the Mnet Asian Music Awards

in 2010 . " Lucifer " also won the Disk Bonsang Award at the 25th Golden Disk Awards as well

as the Popularity Award . On March 21 , 2012 the group released their fourth EP " Sherlock "

for which the group was awarded another Disk Bonsang Award at the 27th Golden Disc Awards

and the Bonsang Award at the 22nd Seoul Music Award . Also following the success of the lead

single it was also nominated for Song of the Year at the 2012 Mnet Asian Music Awards . <t>

Cho Kyuhyun </t> Cho Kyu - hyun ( born February 3 , 1988 ) , better known mononymously as
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Kyuhyun , is a South Korean singer and musical theatre actor . He is best known as a member

of South Korean boy group Super Junior , its sub - groups Super Junior - K.R.Y. , Super Junior

- M and a former member of the South Korean ballad group S.M. the Ballad . He is one of

the first four Korean artists to appear on Chinese postage stamps . <t> 2014 S / S </t> 2014 S

/ S is the debut album of South Korean group WINNER . It was released on August 12 , 2014

by the group ’s record label , YG Entertainment . The members were credited for writing the

lyrics and composing the majority of the album ’s songs . <t> History ( band ) </t> History (

Korean :히스토리 ) was a South Korean boy group formed by LOEN Entertainment in 2013 .

They debuted on April 26 , 2013 with " Dreamer " , featuring the narration of their labelmate

IU . They were LOEN Entertainment ’s first boy group . They officially disbanded on May 12

, 2017 . <t> Winner ( band ) </t> Winner ( Hangul : 위너 ) , often stylized as WINNER , is a

South Korean boy group formed in 2013 by YG Entertainment and debuted in 2014 . It currently

consists of four members , Jinwoo , Seunghoon , Mino and Seungyoon . Originally a five - piece

group with Taehyun , who later departed from the group in November 2016 . <t> Madtown </t>

Madtown ( Hangul : 매드타운 ) , often stylized as MADTOWN , is a South Korean boy group

formed in 2014 by J. Tune Camp . The group consists of Moos , Daewon , Lee Geon , Jota

, Heo Jun , Buffy and H.O. Their debut album , " Mad Town " , was released on October 6 ,

2014 . Two of the members , Moos and Buffy , originally debuted as the hip hop duo " Pro C "

in 2013 . Madtown ’s official fan - base name is Mad - people . Starting December 22 , 2016

, MADTOWN ’s contract was sold to GNI Entertainment after J. Tune Camp closed . <t> List

of songs written by Ravi </t> Ravi is a South Korean rapper , songwriter and producer , signed

under Jellyfish Entertainment . He began his career as a rapper in 2012 in the South Korean boy

group VIXX , and later formed VIXX ’s first sub - unit VIXX LR with band mate Leo in 2015

. Ravi ’s songwriting career began with his participation in co - writing VIXX ’s debut single

" Super Hero " . As of November 2016 with the release of " VIXX 2016 Conception Ker " ,

Ravi has contributed to the writing and composing of over 46 songs recorded by VIXX . Ravi

is widely known for his participation of composing and songwriting rap portions for the group

as well as lyrics and music . <t> SF9 ( band ) </t> SF9 ( Korean : 에스에프나인 ; shortened

from Sensational Feeling 9 ) is a South Korean boy group formed by FNC Entertainment . SF9
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is the company ’s first dance boy group to ever debut . SF9 debuted on October 5 , 2016 with the

release of their first single album " Feeling Sensation " . <t> Seventeen discography </t> This is

the discography of South Korean boy group Seventeen . Seventeen ( Hangul : 세븐틴 ) , also

stylized as SEVENTEEN or SVT , is a South Korean boy group formed by Pledis Entertainment

in 2015 . They have released one album and four EPs . <t> BTS discography </t> The following

is the discography of South Korean boy group BTS . The group debuted in South Korea on

June 2013 with single album , " 2 Cool 4 Skool " , at number 5 on South Korean Week 31 Gaon

Weekly Chart . They made a comeback on September 2013 with an extended play , " O!RUL8,2

? " , which peaked at number 4 on Week 38 Gaon Weekly Chart . BTS then released their second

extended play , " Skool Luv Affair " , in February 2014 , where it charted at number 1 on Week 18

Gaon Weekly Chart . This also marked the first time their album charted on international charts

, Billboard World Albums and Japan ’s Oricon Chart , specifically . A repackaged version of the

album , " Skool Luv Affair Special Addition " which was released in May 2014 , also peaked at

number 1 on Week 21 Gaon Weekly Chart .

Cell #2

Question: 2014 S / S is the debut album of a South Korean boy group that was formed by who ?

Documents: <t> List of awards and nominations received by Shinee </t> South Korean boy

group Shinee have received several awards and nominations for their music work . The group

was formed by S.M. Entertainment in 2008 and released their first full - length album , " The

Shinee World " , on August 28 , 2008 , which won the Newcomer Album of the Year at the 23rd

Golden Disk Awards . The first single released from the album was " Sanso Gateun Neo ( Love

Like Oxygen ) " and won first place on " M Countdown " on September 18 , 2008 making it

the group ’s first win on Korean music shows since debut . Their second album " Lucifer " (

2010 ) produced two singles , " Lucifer " and " Hello " . For their outstanding choreography the

group was nominated for the Best Dance Performance Award at the Mnet Asian Music Awards

in 2010 . " Lucifer " also won the Disk Bonsang Award at the 25th Golden Disk Awards as well

as the Popularity Award . On March 21 , 2012 the group released their fourth EP " Sherlock "

for which the group was awarded another Disk Bonsang Award at the 27th Golden Disc Awards
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and the Bonsang Award at the 22nd Seoul Music Award . Also following the success of the lead

single it was also nominated for Song of the Year at the 2012 Mnet Asian Music Awards . <t>

Cho Kyuhyun </t> Cho Kyu - hyun ( born February 3 , 1988 ) , better known mononymously as

Kyuhyun , is a South Korean singer and musical theatre actor . He is best known as a member

of South Korean boy group Super Junior , its sub - groups Super Junior - K.R.Y. , Super Junior

- M and a former member of the South Korean ballad group S.M. the Ballad . He is one of

the first four Korean artists to appear on Chinese postage stamps . <t> 2014 S / S </t> 2014 S

/ S is the debut album of South Korean group WINNER . It was released on August 12 , 2014

by the group ’s record label , YG Entertainment . The members were credited for writing the

lyrics and composing the majority of the album ’s songs . <t> History ( band ) </t> History (

Korean :히스토리 ) was a South Korean boy group formed by LOEN Entertainment in 2013 .

They debuted on April 26 , 2013 with " Dreamer " , featuring the narration of their labelmate

IU . They were LOEN Entertainment ’s first boy group . They officially disbanded on May 12

, 2017 . <t> Winner ( band ) </t> Winner ( Hangul : 위너 ) , often stylized as WINNER , is a

South Korean boy group formed in 2013 by YG Entertainment and debuted in 2014 . It currently

consists of four members , Jinwoo , Seunghoon , Mino and Seungyoon . Originally a five - piece

group with Taehyun , who later departed from the group in November 2016 . <t> Madtown </t>

Madtown ( Hangul : 매드타운 ) , often stylized as MADTOWN , is a South Korean boy group

formed in 2014 by J. Tune Camp . The group consists of Moos , Daewon , Lee Geon , Jota

, Heo Jun , Buffy and H.O. Their debut album , " Mad Town " , was released on October 6 ,

2014 . Two of the members , Moos and Buffy , originally debuted as the hip hop duo " Pro C "

in 2013 . Madtown ’s official fan - base name is Mad - people . Starting December 22 , 2016

, MADTOWN ’s contract was sold to GNI Entertainment after J. Tune Camp closed . <t> List

of songs written by Ravi </t> Ravi is a South Korean rapper , songwriter and producer , signed

under Jellyfish Entertainment . He began his career as a rapper in 2012 in the South Korean boy

group VIXX , and later formed VIXX ’s first sub - unit VIXX LR with band mate Leo in 2015

. Ravi ’s songwriting career began with his participation in co - writing VIXX ’s debut single

" Super Hero " . As of November 2016 with the release of " VIXX 2016 Conception Ker " ,

Ravi has contributed to the writing and composing of over 46 songs recorded by VIXX . Ravi
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is widely known for his participation of composing and songwriting rap portions for the group

as well as lyrics and music . <t> SF9 ( band ) </t> SF9 ( Korean : 에스에프나인 ; shortened

from Sensational Feeling 9 ) is a South Korean boy group formed by FNC Entertainment . SF9

is the company ’s first dance boy group to ever debut . SF9 debuted on October 5 , 2016 with the

release of their first single album " Feeling Sensation " . <t> Seventeen discography </t> This is

the discography of South Korean boy group Seventeen . Seventeen ( Hangul : 세븐틴 ) , also

stylized as SEVENTEEN or SVT , is a South Korean boy group formed by Pledis Entertainment

in 2015 . They have released one album and four EPs . <t> BTS discography </t> The following

is the discography of South Korean boy group BTS . The group debuted in South Korea on

June 2013 with single album , " 2 Cool 4 Skool " , at number 5 on South Korean Week 31 Gaon

Weekly Chart . They made a comeback on September 2013 with an extended play , " O!RUL8,2

? " , which peaked at number 4 on Week 38 Gaon Weekly Chart . BTS then released their second

extended play , " Skool Luv Affair " , in February 2014 , where it charted at number 1 on Week 18

Gaon Weekly Chart . This also marked the first time their album charted on international charts

, Billboard World Albums and Japan ’s Oricon Chart , specifically . A repackaged version of the

album , " Skool Luv Affair Special Addition " which was released in May 2014 , also peaked at

number 1 on Week 21 Gaon Weekly Chart .

B.2 Maps for Question 5a85ea095542994775f606a8

Cell #1

Question: What science fantasy young adult series , told in first person , has a set of companion

books narrating the stories of enslaved worlds and alien species ?

Documents: <t> Andre Norton Award </t> The Andre Norton Award for Young Adult Science

Fiction and Fantasy is an annual award presented by the Science Fiction and Fantasy Writers

of America ( SFWA ) to the author of the best young adult or middle grade science fiction or

fantasy book published in the United States in the preceding year . It is named to honor prolific

science fiction and fantasy author Andre Norton ( 1912–2005 ) , and it was established by then
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SFWA president Catherine Asaro and the SFWA Young Adult Fiction committee and announced

on February 20 , 2005 . Any published young adult or middle grade science fiction or fantasy

novel is eligible for the prize , including graphic novels . There is no limit on word count . The

award is presented along with the Nebula Awards and follows the same rules for nominations and

voting ; as the awards are separate , works may be simultaneously nominated for both the Andre

Norton award and a Nebula Award . <t> Victoria Hanley </t> Victoria Hanley is an American

young adult fantasy novelist . Her first three books , " The Seer And The Sword " , " The Healer

’s Keep " and " The Light Of The Oracle " are companion books to one another . Her newest

book ( released March 2012 ) is the sequel of a series , called " Indigo Magic " , published by

Egmont USA . She ’s also published two non - fiction books through Cotton Wood Press ; called

" Seize the Story : A Handbook For Teens Who Like To Write " , and " Wild Ink : A Grownups

Guide To Writing Fiction For Teens " . <t> The Hork - Bajir Chronicles </t> The Hork - Bajir

Chronicles is the second companion book to the " Animorphs " series , written by K. A. Applegate

. With respect to continuity within the series , it takes place before book # 23 , " The Pretender "

, although the events told in the story occur between the time of " The Ellimist Chronicles " and "

The Andalite Chronicles " . The book is introduced by Tobias , who flies to the valley of the free

Hork - Bajir , where Jara Hamee tells him the story of how the Yeerks enslaved the Hork - Bajir

, and how Aldrea , an Andalite , and her companion , Dak Hamee , a Hork - Bajir , tried to save

their world from the invasion . Jara Hamee ’s story is narrated from the points of view of Aldrea

, Dak Hamee , and Esplin 9466 , alternating in similar fashion to the " Megamorphs " books . <t>

Shadowshaper </t> Shadowshaper is a 2015 American urban fantasy young adult novel written

by Daniel José Older . It follows Sierra Santiago , an Afro - Boricua teenager living in Brooklyn .

She is the granddaughter of a " shadowshaper " , or a person who infuses art with ancestral spirits

. As forces of gentrification invade their community and a mysterious being who appropriates

their magic begins to hunt the aging shadowshapers , Sierra must learn about her artistic and

spiritual heritage to foil the killer . <t> Left Behind : The Kids </t> " Left Behind : The Kids

( stylized as LEFT BEHIND > THE KIDS < ) " is a series written by Jerry B. Jenkins , Tim

LaHaye , and Chris Fabry . The series consists of 40 short novels aimed primarily at the young

adult market based on the adult series Left Behind also written by Jerry B. Jenkins . It follows
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a core group of teenagers as they experience the rapture and tribulation , based on scriptures

found in the Bible , and background plots introduced in the adult novels . Like the adult series ,

the books were published by Tyndale House Publishing , and released over the 7 year period of

1997 - 2004 . The series has sold over 11 million copies worldwide . <t> List of Square Enix

companion books </t> Dozens of Square Enix companion books have been produced since 1998

, when video game developer Square began to produce books that focused on artwork , developer

interviews , and background information on the fictional worlds and characters in its games rather

than on gameplay details . The first series of these books was the " Perfect Works " series , written

and published by Square subsidiary DigiCube . They produced three books between 1998 and

1999 before the line was stopped in favor of the " Ultimania " (アルティマニア , Arutimania )

series , a portmanteau of ultimate and mania . This series of books is written by Studio BentStuff

, which had previously written game guides for Square for " Final Fantasy VII " . They were

published by DigiCube until the company was dissolved in 2003 . Square merged with video

game publisher Enix on April 1 , 2003 to form Square Enix , which resumed publication of the

companion books . <t> The Divide trilogy </t> The Divide trilogy is a fantasy young adult novel

trilogy by Elizabeth Kay , which takes place in an alternate universe . The three books are " The

Divide " ( 2002 ) , " Back to The Divide " ( 2005 ) , and " Jinx on The Divide " ( 2006 ) . The

first novel was originally published by the small press publisher Chicken House ( now a division

of Scholastic ) , with subsequent volumes published by Scholastic , which also reprinted the first

novel . The books have been translated into French , German , Spanish , Finnish , Chinese ,

Japanese , Portuguese , Italian , Romanian and Dutch . Interior illustrations are by Ted Dewan

. <t> Science Fantasy ( magazine ) </t> Science Fantasy , which also appeared under the titles

Impulse and SF Impulse , was a British fantasy and science fiction magazine , launched in 1950

by Nova Publications as a companion to Nova ’s " New Worlds " . Walter Gillings was editor

for the first two issues , and was then replaced by John Carnell , the editor of " New Worlds " ,

as a cost - saving measure . Carnell edited both magazines until Nova went out of business in

early 1964 . The titles were acquired by Roberts & Vinter , who hired Kyril Bonfiglioli to edit

" Science Fantasy " ; Bonfiglioli changed the title to " Impulse " in early 1966 , but the new title

led to confusion with the distributors and sales fell , though the magazine remained profitable .
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The title was changed again to " SF Impulse " for the last few issues . " Science Fantasy " ceased

publication the following year , when Roberts & Vinter came under financial pressure after their

printer went bankrupt . <t> Animorphs </t> Animorphs is a science fantasy series of young adult

books written by Katherine Applegate and her husband Michael Grant , writing together under

the name K. A. Applegate , and published by Scholastic . It is told in first person , with all six

main characters taking turns narrating the books through their own perspectives . Horror , war ,

dehumanization , sanity , morality , innocence , leadership , freedom and growing up are the core

themes of the series . <t> Etiquette & amp ; Espionage </t> Etiquette & Espionage is a young

adult steampunk novel by Gail Carriger . It is her first young adult novel , and is set in the same

universe as her bestselling Parasol Protectorate adult series .

Cell #2

Question: What science fantasy young adult series , told in first person , has a set of companion

books narrating the stories of enslaved worlds and alien species ?

Documents: <t> Andre Norton Award </t> The Andre Norton Award for Young Adult Science

Fiction and Fantasy is an annual award presented by the Science Fiction and Fantasy Writers

of America ( SFWA ) to the author of the best young adult or middle grade science fiction or

fantasy book published in the United States in the preceding year . It is named to honor prolific

science fiction and fantasy author Andre Norton ( 1912–2005 ) , and it was established by then

SFWA president Catherine Asaro and the SFWA Young Adult Fiction committee and announced

on February 20 , 2005 . Any published young adult or middle grade science fiction or fantasy

novel is eligible for the prize , including graphic novels . There is no limit on word count . The

award is presented along with the Nebula Awards and follows the same rules for nominations and

voting ; as the awards are separate , works may be simultaneously nominated for both the Andre

Norton award and a Nebula Award . <t> Victoria Hanley </t> Victoria Hanley is an American

young adult fantasy novelist . Her first three books , " The Seer And The Sword " , " The Healer

’s Keep " and " The Light Of The Oracle " are companion books to one another . Her newest

book ( released March 2012 ) is the sequel of a series , called " Indigo Magic " , published by

Egmont USA . She ’s also published two non - fiction books through Cotton Wood Press ; called
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" Seize the Story : A Handbook For Teens Who Like To Write " , and " Wild Ink : A Grownups

Guide To Writing Fiction For Teens " . <t> The Hork - Bajir Chronicles </t> The Hork - Bajir

Chronicles is the second companion book to the " Animorphs " series , written by K. A. Applegate

. With respect to continuity within the series , it takes place before book # 23 , " The Pretender "

, although the events told in the story occur between the time of " The Ellimist Chronicles " and "

The Andalite Chronicles " . The book is introduced by Tobias , who flies to the valley of the free

Hork - Bajir , where Jara Hamee tells him the story of how the Yeerks enslaved the Hork - Bajir

, and how Aldrea , an Andalite , and her companion , Dak Hamee , a Hork - Bajir , tried to save

their world from the invasion . Jara Hamee ’s story is narrated from the points of view of Aldrea

, Dak Hamee , and Esplin 9466 , alternating in similar fashion to the " Megamorphs " books . <t>

Shadowshaper </t> Shadowshaper is a 2015 American urban fantasy young adult novel written

by Daniel José Older . It follows Sierra Santiago , an Afro - Boricua teenager living in Brooklyn .

She is the granddaughter of a " shadowshaper " , or a person who infuses art with ancestral spirits

. As forces of gentrification invade their community and a mysterious being who appropriates

their magic begins to hunt the aging shadowshapers , Sierra must learn about her artistic and

spiritual heritage to foil the killer . <t> Left Behind : The Kids </t> " Left Behind : The Kids

( stylized as LEFT BEHIND > THE KIDS < ) " is a series written by Jerry B. Jenkins , Tim

LaHaye , and Chris Fabry . The series consists of 40 short novels aimed primarily at the young

adult market based on the adult series Left Behind also written by Jerry B. Jenkins . It follows

a core group of teenagers as they experience the rapture and tribulation , based on scriptures

found in the Bible , and background plots introduced in the adult novels . Like the adult series ,

the books were published by Tyndale House Publishing , and released over the 7 year period of

1997 - 2004 . The series has sold over 11 million copies worldwide . <t> List of Square Enix

companion books </t> Dozens of Square Enix companion books have been produced since 1998

, when video game developer Square began to produce books that focused on artwork , developer

interviews , and background information on the fictional worlds and characters in its games rather

than on gameplay details . The first series of these books was the " Perfect Works " series , written

and published by Square subsidiary DigiCube . They produced three books between 1998 and

1999 before the line was stopped in favor of the " Ultimania " (アルティマニア , Arutimania )
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series , a portmanteau of ultimate and mania . This series of books is written by Studio BentStuff

, which had previously written game guides for Square for " Final Fantasy VII " . They were

published by DigiCube until the company was dissolved in 2003 . Square merged with video

game publisher Enix on April 1 , 2003 to form Square Enix , which resumed publication of the

companion books . <t> The Divide trilogy </t> The Divide trilogy is a fantasy young adult novel

trilogy by Elizabeth Kay , which takes place in an alternate universe . The three books are " The

Divide " ( 2002 ) , " Back to The Divide " ( 2005 ) , and " Jinx on The Divide " ( 2006 ) . The

first novel was originally published by the small press publisher Chicken House ( now a division

of Scholastic ) , with subsequent volumes published by Scholastic , which also reprinted the first

novel . The books have been translated into French , German , Spanish , Finnish , Chinese ,

Japanese , Portuguese , Italian , Romanian and Dutch . Interior illustrations are by Ted Dewan

. <t> Science Fantasy ( magazine ) </t> Science Fantasy , which also appeared under the titles

Impulse and SF Impulse , was a British fantasy and science fiction magazine , launched in 1950

by Nova Publications as a companion to Nova ’s " New Worlds " . Walter Gillings was editor

for the first two issues , and was then replaced by John Carnell , the editor of " New Worlds " ,

as a cost - saving measure . Carnell edited both magazines until Nova went out of business in

early 1964 . The titles were acquired by Roberts & Vinter , who hired Kyril Bonfiglioli to edit

" Science Fantasy " ; Bonfiglioli changed the title to " Impulse " in early 1966 , but the new title

led to confusion with the distributors and sales fell , though the magazine remained profitable .

The title was changed again to " SF Impulse " for the last few issues . " Science Fantasy " ceased

publication the following year , when Roberts & Vinter came under financial pressure after their

printer went bankrupt . <t> Animorphs </t> Animorphs is a science fantasy series of young adult

books written by Katherine Applegate and her husband Michael Grant , writing together under

the name K. A. Applegate , and published by Scholastic . It is told in first person , with all six

main characters taking turns narrating the books through their own perspectives . Horror , war ,

dehumanization , sanity , morality , innocence , leadership , freedom and growing up are the core

themes of the series . <t> Etiquette & amp ; Espionage </t> Etiquette & Espionage is a young

adult steampunk novel by Gail Carriger . It is her first young adult novel , and is set in the same

universe as her bestselling Parasol Protectorate adult series .
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B.3 Maps for Question 5a8c7595554299585d9e36b6

Cell #1

Question: What government position was held by the woman who portrayed Corliss Archer in

the film Kiss and Tell ?

Documents: <t> Meet Corliss Archer </t> Meet Corliss Archer , a program from radio ’s Golden

Age , ran from January 7 , 1943 to September 30 , 1956 . Although it was CBS ’s answer to NBC

’s popular " A Date with Judy " , it was also broadcast by NBC in 1948 as a summer replacement

for " The Bob Hope Show " . From October 3 , 1952 to June 26 , 1953 , it aired on ABC ,

finally returning to CBS . Despite the program ’s long run , fewer than 24 episodes are known

to exist . <t> Shirley Temple </t> Shirley Temple Black ( April 23 , 1928 – February 10 , 2014 )

was an American actress , singer , dancer , businesswoman , and diplomat who was Hollywood

’s number one box - office draw as a child actress from 1935 to 1938 . As an adult , she was

named United States ambassador to Ghana and to Czechoslovakia and also served as Chief of

Protocol of the United States . <t> Janet Waldo </t> Janet Marie Waldo ( February 4 , 1920 –

June 12 , 2016 ) was an American radio and voice actress . She is best known in animation

for voicing Judy Jetson , Nancy in " Shazzan " , Penelope Pitstop , and Josie in " Josie and the

Pussycats " , and on radio as the title character in " Meet Corliss Archer " . <t> Meet Corliss

Archer ( TV series ) </t> Meet Corliss Archer is an American television sitcom that aired on

CBS ( July 13 , 1951 - August 10 , 1951 ) and in syndication via the Ziv Company from April to

December 1954 . The program was an adaptation of the radio series of the same name , which

was based on a series of short stories by F. Hugh Herbert . <t> Lord High Treasurer </t> The

post of Lord High Treasurer or Lord Treasurer was an English government position and has been

a British government position since the Acts of Union of 1707 . A holder of the post would be

the third - highest - ranked Great Officer of State , below the Lord High Steward and the Lord

High Chancellor . <t> A Kiss for Corliss </t> A Kiss for Corliss is a 1949 American comedy film

directed by Richard Wallace and written by Howard Dimsdale . It stars Shirley Temple in her

final starring role as well as her final film appearance . It is a sequel to the 1945 film " Kiss and

Tell " . " A Kiss for Corliss " was retitled " Almost a Bride " before release and this title appears

in the title sequence . The film was released on November 25 , 1949 , by United Artists . <t> Kiss
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and Tell ( 1945 film ) </t> Kiss and Tell is a 1945 American comedy film starring then 17-year

- old Shirley Temple as Corliss Archer . In the film , two teenage girls cause their respective

parents much concern when they start to become interested in boys . The parents ’ bickering

about which girl is the worse influence causes more problems than it solves . <t> Secretary of

State for Constitutional Affairs </t> The office of Secretary of State for Constitutional Affairs

was a British Government position , created in 2003 . Certain functions of the Lord Chancellor

which related to the Lord Chancellor ’s Department were transferred to the Secretary of State .

At a later date further functions were also transferred to the Secretary of State for Constitutional

Affairs from the First Secretary of State , a position within the government held by the Deputy

Prime Minister . <t> Village accountant </t> The Village Accountant ( variously known as "

Patwari " , " Talati " , " Patel " , " Karnam " , " Adhikari " , " Shanbogaru","Patnaik " etc . ) is an

administrative government position found in rural parts of the Indian sub - continent . The office

and the officeholder are called the " patwari " in Telangana , Bengal , North India and in Pakistan

while in Sindh it is called " tapedar " . The position is known as the " karnam " in Andhra Pradesh

, " patnaik " in Orissa or " adhikari " in Tamil Nadu , while it is commonly known as the " talati "

in Karnataka , Gujarat and Maharashtra . The position was known as the " kulkarni " in Northern

Karnataka and Maharashtra . The position was known as the " shanbogaru " in South Karnataka

. <t> Charles Craft </t> Charles Craft ( May 9 , 1902 – September 19 , 1968 ) was an English -

born American film and television editor . Born in the county of Hampshire in England on May

9 , 1902 , Craft would enter the film industry in Hollywood in 1927 . The first film he edited was

the Universal Pictures silent film , " Painting the Town " . Over the next 25 years , Craft would

edit 90 feature - length films . In the early 1950s he would switch his focus to the small screen ,

his first show being " Racket Squad " , from 1951–53 , for which he was the main editor , editing

93 of the 98 episodes . He would work on several other series during the 1950s , including "

Meet Corliss Archer " ( 1954 ) , " Science Fiction Theatre " ( 1955–56 ) , and " Highway Patrol

" ( 1955–57 ) . In the late 1950s and early 1960s he was one of the main editors on " Sea Hunt "

, starring Lloyd Bridges , editing over half of the episodes . His final film work would be editing

" Flipper ’s New Adventure " ( 1964 , the sequel to 1963 ’s " Flipper " . When the film was

made into a television series , Craft would begin the editing duties on that show , editing the
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first 28 episodes before he retired in 1966 . Craft died on September 19 , 1968 in Los Angeles ,

California .

Cell #2

Question: What government position was held by the woman who portrayed Corliss Archer in

the film Kiss and Tell ?

Documents: <t> Meet Corliss Archer </t> Meet Corliss Archer , a program from radio ’s Golden

Age , ran from January 7 , 1943 to September 30 , 1956 . Although it was CBS ’s answer to NBC

’s popular " A Date with Judy " , it was also broadcast by NBC in 1948 as a summer replacement

for " The Bob Hope Show " . From October 3 , 1952 to June 26 , 1953 , it aired on ABC ,

finally returning to CBS . Despite the program ’s long run , fewer than 24 episodes are known

to exist . <t> Shirley Temple </t> Shirley Temple Black ( April 23 , 1928 – February 10 , 2014 )

was an American actress , singer , dancer , businesswoman , and diplomat who was Hollywood

’s number one box - office draw as a child actress from 1935 to 1938 . As an adult , she was

named United States ambassador to Ghana and to Czechoslovakia and also served as Chief of

Protocol of the United States . <t> Janet Waldo </t> Janet Marie Waldo ( February 4 , 1920 –

June 12 , 2016 ) was an American radio and voice actress . She is best known in animation

for voicing Judy Jetson , Nancy in " Shazzan " , Penelope Pitstop , and Josie in " Josie and the

Pussycats " , and on radio as the title character in " Meet Corliss Archer " . <t> Meet Corliss

Archer ( TV series ) </t> Meet Corliss Archer is an American television sitcom that aired on

CBS ( July 13 , 1951 - August 10 , 1951 ) and in syndication via the Ziv Company from April to

December 1954 . The program was an adaptation of the radio series of the same name , which

was based on a series of short stories by F. Hugh Herbert . <t> Lord High Treasurer </t> The

post of Lord High Treasurer or Lord Treasurer was an English government position and has been

a British government position since the Acts of Union of 1707 . A holder of the post would be

the third - highest - ranked Great Officer of State , below the Lord High Steward and the Lord

High Chancellor . <t> A Kiss for Corliss </t> A Kiss for Corliss is a 1949 American comedy film

directed by Richard Wallace and written by Howard Dimsdale . It stars Shirley Temple in her

final starring role as well as her final film appearance . It is a sequel to the 1945 film " Kiss and
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Tell " . " A Kiss for Corliss " was retitled " Almost a Bride " before release and this title appears

in the title sequence . The film was released on November 25 , 1949 , by United Artists . <t> Kiss

and Tell ( 1945 film ) </t> Kiss and Tell is a 1945 American comedy film starring then 17-year

- old Shirley Temple as Corliss Archer . In the film , two teenage girls cause their respective

parents much concern when they start to become interested in boys . The parents ’ bickering

about which girl is the worse influence causes more problems than it solves . <t> Secretary of

State for Constitutional Affairs </t> The office of Secretary of State for Constitutional Affairs

was a British Government position , created in 2003 . Certain functions of the Lord Chancellor

which related to the Lord Chancellor ’s Department were transferred to the Secretary of State .

At a later date further functions were also transferred to the Secretary of State for Constitutional

Affairs from the First Secretary of State , a position within the government held by the Deputy

Prime Minister . <t> Village accountant </t> The Village Accountant ( variously known as "

Patwari " , " Talati " , " Patel " , " Karnam " , " Adhikari " , " Shanbogaru","Patnaik " etc . ) is an

administrative government position found in rural parts of the Indian sub - continent . The office

and the officeholder are called the " patwari " in Telangana , Bengal , North India and in Pakistan

while in Sindh it is called " tapedar " . The position is known as the " karnam " in Andhra Pradesh

, " patnaik " in Orissa or " adhikari " in Tamil Nadu , while it is commonly known as the " talati "

in Karnataka , Gujarat and Maharashtra . The position was known as the " kulkarni " in Northern

Karnataka and Maharashtra . The position was known as the " shanbogaru " in South Karnataka

. <t> Charles Craft </t> Charles Craft ( May 9 , 1902 – September 19 , 1968 ) was an English -

born American film and television editor . Born in the county of Hampshire in England on May

9 , 1902 , Craft would enter the film industry in Hollywood in 1927 . The first film he edited was

the Universal Pictures silent film , " Painting the Town " . Over the next 25 years , Craft would

edit 90 feature - length films . In the early 1950s he would switch his focus to the small screen ,

his first show being " Racket Squad " , from 1951–53 , for which he was the main editor , editing

93 of the 98 episodes . He would work on several other series during the 1950s , including "

Meet Corliss Archer " ( 1954 ) , " Science Fiction Theatre " ( 1955–56 ) , and " Highway Patrol

" ( 1955–57 ) . In the late 1950s and early 1960s he was one of the main editors on " Sea Hunt "

, starring Lloyd Bridges , editing over half of the episodes . His final film work would be editing
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" Flipper ’s New Adventure " ( 1964 , the sequel to 1963 ’s " Flipper " . When the film was

made into a television series , Craft would begin the editing duties on that show , editing the

first 28 episodes before he retired in 1966 . Craft died on September 19 , 1968 in Los Angeles ,

California .

B.4 Maps for Question 5a8b57f25542995d1e6f1371

Cell #1

Question: Were Scott Derrickson and Ed Wood of the same nationality ?

Documents: <t> Ed Wood ( film ) </t> Ed Wood is a 1994 American biographical period comedy

- drama film directed and produced by Tim Burton , and starring Johnny Depp as cult filmmaker

Ed Wood . The film concerns the period in Wood ’s life when he made his best - known films as

well as his relationship with actor Bela Lugosi , played by Martin Landau . Sarah Jessica Parker

, Patricia Arquette , Jeffrey Jones , Lisa Marie , and Bill Murray are among the supporting cast

. <t> Scott Derrickson </t> Scott Derrickson ( born July 16 , 1966 ) is an American director ,

screenwriter and producer . He lives in Los Angeles , California . He is best known for directing

horror films such as " Sinister " , " The Exorcism of Emily Rose " , and " Deliver Us From Evil "

, as well as the 2016 Marvel Cinematic Universe installment , " Doctor Strange . " <t> Woodson

, Arkansas </t> Woodson is a census - designated place ( CDP ) in Pulaski County , Arkansas ,

in the United States . Its population was 403 at the 2010 census . It is part of the Little Rock

– North Little Rock – Conway Metropolitan Statistical Area . Woodson and its accompanying

Woodson Lake and Wood Hollow are the namesake for Ed Wood Sr . , a prominent plantation

owner , trader , and businessman at the turn of the 20th century . Woodson is adjacent to the

Wood Plantation , the largest of the plantations own by Ed Wood Sr . <t> Tyler Bates </t> Tyler

Bates ( born June 5 , 1965 ) is an American musician , music producer , and composer for films ,

television , and video games . Much of his work is in the action and horror film genres , with films

like " Dawn of the Dead , 300 , Sucker Punch , " and " John Wick . " He has collaborated with

directors like Zack Snyder , Rob Zombie , Neil Marshall , William Friedkin , Scott Derrickson
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, and James Gunn . With Gunn , he has scored every one of the director ’s films ; including

" Guardians of the Galaxy " , which became one of the highest grossing domestic movies of

2014 , and its 2017 sequel . In addition , he is also the lead guitarist of the American rock band

Marilyn Manson , and produced its albums " The Pale Emperor " and " Heaven Upside Down

" . <t> Ed Wood </t> Edward Davis Wood Jr. ( October 10 , 1924 – December 10 , 1978 ) was

an American filmmaker , actor , writer , producer , and director . <t> Deliver Us from Evil (

2014 film ) </t> Deliver Us from Evil is a 2014 American supernatural horror film directed by

Scott Derrickson and produced by Jerry Bruckheimer . The film is officially based on a 2001

non - fiction book entitled " Beware the Night " by Ralph Sarchie and Lisa Collier Cool , and

its marketing campaign highlighted that it was " inspired by actual accounts " . The film stars

Eric Bana , Édgar Ramírez , Sean Harris , Olivia Munn , and Joel McHale in the main roles and

was released on July 2 , 2014 . <t> Adam Collis </t> Adam Collis is an American filmmaker and

actor . He attended the Duke University from 1986 to 1990 and the University of California , Los

Angeles from 2007 to 2010 . He also studied cinema at the University of Southern California

from 1991 to 1997 . Collis first work was the assistant director for the Scott Derrickson ’s short

" Love in the Ruins " ( 1995 ) . In 1998 , he played " Crankshaft " in Eric Koyanagi ’s " Hundred

Percent " . <t> Sinister ( film ) </t> Sinister is a 2012 supernatural horror film directed by Scott

Derrickson and written by Derrickson and C. Robert Cargill . It stars Ethan Hawke as fictional

true - crime writer Ellison Oswalt who discovers a box of home movies in his attic that puts his

family in danger . <t> Conrad Brooks </t> Conrad Brooks ( born Conrad Biedrzycki on January

3 , 1931 in Baltimore , Maryland ) is an American actor . He moved to Hollywood , California

in 1948 to pursue a career in acting . He got his start in movies appearing in Ed Wood films such

as " Plan 9 from Outer Space " , " Glen or Glenda " , and " Jail Bait . " He took a break from

acting during the 1960s and 1970s but due to the ongoing interest in the films of Ed Wood , he

reemerged in the 1980s and has become a prolific actor . He also has since gone on to write ,

produce and direct several films . <t> Doctor Strange ( 2016 film ) </t> Doctor Strange is a 2016

American superhero film based on the Marvel Comics character of the same name , produced

by Marvel Studios and distributed by Walt Disney Studios Motion Pictures . It is the fourteenth

film of the Marvel Cinematic Universe ( MCU ) . The film was directed by Scott Derrickson ,
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who wrote it with Jon Spaihts and C. Robert Cargill , and stars Benedict Cumberbatch as Stephen

Strange , along with Chiwetel Ejiofor , Rachel McAdams , Benedict Wong , Michael Stuhlbarg

, Benjamin Bratt , Scott Adkins , Mads Mikkelsen , and Tilda Swinton . In " Doctor Strange " ,

surgeon Strange learns the mystic arts after a career - ending car accident .

Cell #2

Question: Were Scott Derrickson and Ed Wood of the same nationality ?

Documents: <t> Ed Wood ( film ) </t> Ed Wood is a 1994 American biographical period comedy

- drama film directed and produced by Tim Burton , and starring Johnny Depp as cult filmmaker

Ed Wood . The film concerns the period in Wood ’s life when he made his best - known films as

well as his relationship with actor Bela Lugosi , played by Martin Landau . Sarah Jessica Parker

, Patricia Arquette , Jeffrey Jones , Lisa Marie , and Bill Murray are among the supporting cast

. <t> Scott Derrickson </t> Scott Derrickson ( born July 16 , 1966 ) is an American director ,

screenwriter and producer . He lives in Los Angeles , California . He is best known for directing

horror films such as " Sinister " , " The Exorcism of Emily Rose " , and " Deliver Us From Evil "

, as well as the 2016 Marvel Cinematic Universe installment , " Doctor Strange . " <t> Woodson

, Arkansas </t> Woodson is a census - designated place ( CDP ) in Pulaski County , Arkansas ,

in the United States . Its population was 403 at the 2010 census . It is part of the Little Rock

– North Little Rock – Conway Metropolitan Statistical Area . Woodson and its accompanying

Woodson Lake and Wood Hollow are the namesake for Ed Wood Sr . , a prominent plantation

owner , trader , and businessman at the turn of the 20th century . Woodson is adjacent to the

Wood Plantation , the largest of the plantations own by Ed Wood Sr . <t> Tyler Bates </t> Tyler

Bates ( born June 5 , 1965 ) is an American musician , music producer , and composer for films ,

television , and video games . Much of his work is in the action and horror film genres , with films

like " Dawn of the Dead , 300 , Sucker Punch , " and " John Wick . " He has collaborated with

directors like Zack Snyder , Rob Zombie , Neil Marshall , William Friedkin , Scott Derrickson

, and James Gunn . With Gunn , he has scored every one of the director ’s films ; including

" Guardians of the Galaxy " , which became one of the highest grossing domestic movies of

2014 , and its 2017 sequel . In addition , he is also the lead guitarist of the American rock band
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Marilyn Manson , and produced its albums " The Pale Emperor " and " Heaven Upside Down

" . <t> Ed Wood </t> Edward Davis Wood Jr. ( October 10 , 1924 – December 10 , 1978 ) was

an American filmmaker , actor , writer , producer , and director . <t> Deliver Us from Evil (

2014 film ) </t> Deliver Us from Evil is a 2014 American supernatural horror film directed by

Scott Derrickson and produced by Jerry Bruckheimer . The film is officially based on a 2001

non - fiction book entitled " Beware the Night " by Ralph Sarchie and Lisa Collier Cool , and

its marketing campaign highlighted that it was " inspired by actual accounts " . The film stars

Eric Bana , Édgar Ramírez , Sean Harris , Olivia Munn , and Joel McHale in the main roles and

was released on July 2 , 2014 . <t> Adam Collis </t> Adam Collis is an American filmmaker and

actor . He attended the Duke University from 1986 to 1990 and the University of California , Los

Angeles from 2007 to 2010 . He also studied cinema at the University of Southern California

from 1991 to 1997 . Collis first work was the assistant director for the Scott Derrickson ’s short

" Love in the Ruins " ( 1995 ) . In 1998 , he played " Crankshaft " in Eric Koyanagi ’s " Hundred

Percent " . <t> Sinister ( film ) </t> Sinister is a 2012 supernatural horror film directed by Scott

Derrickson and written by Derrickson and C. Robert Cargill . It stars Ethan Hawke as fictional

true - crime writer Ellison Oswalt who discovers a box of home movies in his attic that puts his

family in danger . <t> Conrad Brooks </t> Conrad Brooks ( born Conrad Biedrzycki on January

3 , 1931 in Baltimore , Maryland ) is an American actor . He moved to Hollywood , California

in 1948 to pursue a career in acting . He got his start in movies appearing in Ed Wood films such

as " Plan 9 from Outer Space " , " Glen or Glenda " , and " Jail Bait . " He took a break from

acting during the 1960s and 1970s but due to the ongoing interest in the films of Ed Wood , he

reemerged in the 1980s and has become a prolific actor . He also has since gone on to write ,

produce and direct several films . <t> Doctor Strange ( 2016 film ) </t> Doctor Strange is a 2016

American superhero film based on the Marvel Comics character of the same name , produced

by Marvel Studios and distributed by Walt Disney Studios Motion Pictures . It is the fourteenth

film of the Marvel Cinematic Universe ( MCU ) . The film was directed by Scott Derrickson ,

who wrote it with Jon Spaihts and C. Robert Cargill , and stars Benedict Cumberbatch as Stephen

Strange , along with Chiwetel Ejiofor , Rachel McAdams , Benedict Wong , Michael Stuhlbarg
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, Benjamin Bratt , Scott Adkins , Mads Mikkelsen , and Tilda Swinton . In " Doctor Strange " ,

surgeon Strange learns the mystic arts after a career - ending car accident .



APPENDIX C

BERT-based Model Attention Maps

In this appendix we provide full attention maps of 8 HotpotQA dev set questions from our BERT-based

document selection model. Colour indicates attention values, with darker red indicating higher attention

values. Questions are referred to by their HotpotQA ID.

C.1 Maps for Question 5a8b57f25542995d1e6f1371

Question ID 5a8b57f25542995d1e6f1371

Cell #1

Control: were scott derrick ##son and ed wood of the same nationality ?

Read: < t > scott derrick ##son < / t > scott derrick ##son ( born july 16 , 1966 ) is an american

director , screenwriter and producer . he lives in los angeles , california . he is best known

for directing horror films such as " sinister " , " the ex ##or ##cis ##m of emily rose " , and "

deliver us from evil " , as well as the 2016 marvel cinematic universe installment , " doctor

strange . "

Cell #2

Control: were scott derrick ##son and ed wood of the same nationality ?

Read: < t > ed wood < / t > edward davis wood jr . ( october 10 , 1924 – december 10 , 1978 )

was an american filmmaker , actor , writer , producer , and director .

124
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C.2 Maps for Question 5a8c7595554299585d9e36b6

Question ID 5a8c7595554299585d9e36b6

Cell #1

Control: what government position was held by the woman who portrayed co ##rl ##iss archer

in the film kiss and tell ?

Read: < t > kiss and tell ( 1945 film ) < / t > kiss and tell is a 1945 american comedy film starring

then 17 - year - old shirley temple as co ##rl ##iss archer . in the film , two teenage girls

cause their respective parents much concern when they start to become interested in boys .

the parents ’ bi ##cker ##ing about which girl is the worse influence causes more problems

than it solve ##s .

Cell #2

Control: what government position was held by the woman who portrayed co ##rl ##iss archer

in the film kiss and tell ?

Read: < t > shirley temple < / t > shirley temple black ( april 23 , 1928 – february 10 , 2014 ) was

an american actress , singer , dancer , business ##woman , and diplomat who was hollywood

’ s number one box - office draw as a child actress from 1935 to 1938 . as an adult , she was

named united states ambassador to ghana and to czechoslovakia and also served as chief of

protocol of the united states .

C.3 Maps for Question 5a85ea095542994775f606a8

Question ID 5a85ea095542994775f606a8

Cell #1

Control: what science fantasy young adult series , told in first person , has a set of companion

books na ##rra ##ting the stories of enslaved worlds and alien species ?
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Read: < t > the ho ##rk - ba ##ji ##r chronicles < / t > the ho ##rk - ba ##ji ##r chronicles is the

second companion book to the " an ##imo ##rp ##hs " series , written by k . a . apple ##gate

. with respect to continuity within the series , it takes place before book # 23 , " the pretend

##er " , although the events told in the story occur between the time of " the el ##lim ##ist

chronicles " and " the and ##ali ##te chronicles " . the book is introduced by tobias , who

flies to the valley of the free ho ##rk - ba ##ji ##r , where jar ##a ham ##ee tells him the

story of how the ye ##er ##ks enslaved the ho ##rk - ba ##ji ##r , and how al ##dre ##a , an

and ##ali ##te , and her companion , da ##k ham ##ee , a ho ##rk - ba ##ji ##r , tried to save

their world from the invasion . jar ##a ham ##ee ’ s story is narrated from the points of view

of al ##dre ##a , da ##k ham ##ee , and es ##plin 94 ##66 , alternating in similar fashion to

the " mega ##mo ##rp ##hs " books .

Cell #2

Control: what science fantasy young adult series , told in first person , has a set of companion

books na ##rra ##ting the stories of enslaved worlds and alien species ?

Read: < t > an ##imo ##rp ##hs < / t > an ##imo ##rp ##hs is a science fantasy series of

young adult books written by katherine apple ##gate and her husband michael grant , writing

together under the name k . a . apple ##gate , and published by scholastic . it is told in first

person , with all six main characters taking turns na ##rra ##ting the books through their

own perspectives . horror , war , de ##hum ##ani ##zation , sanity , morality , innocence ,

leadership , freedom and growing up are the core themes of the series .

C.4 Maps for Question 5adbf0a255429947ff17385a

Question ID 5adbf0a255429947ff17385a

Cell #1

Control: are the lal ##eli mosque and es ##ma sultan mansion located in the same neighborhood

?
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Read: < t > es ##ma sultan mansion < / t > the es ##ma sultan mansion ( turkish : " es ##ma

sultan ya ##l ##ı ##s ##ı " ) , a historical ya ##l ##ı ( english : waters ##ide mansion ) located

at bo ##sp ##hor ##us in or ##ta ##ko ##y neighborhood of istanbul , turkey and named after

its original owner es ##ma sultan , is used today as a cultural center after being redeveloped

.

Cell #2

Control: are the lal ##eli mosque and es ##ma sultan mansion located in the same neighborhood

?

Read: < t > lal ##eli mosque < / t > the lal ##eli mosque ( turkish : " lal ##eli cam ##ii , or tu

##lip mosque " ) is an 18th - century ottoman imperial mosque located in lal ##eli , fat ##ih

, istanbul , turkey .

C.5 Maps for Question 5a8e3ea95542995a26add48d

Question ID 5a8e3ea95542995a26add48d

Cell #1

Control: the director of the romantic comedy " big stone gap " is based in what new york city ?

Read: < t > big stone gap ( film ) < / t > big stone gap is a 2014 american drama romantic comedy

film written and directed by adrian ##a tri ##gia ##ni and produced by donna gig ##lio ##tti

for altar identity studios , a subsidiary of media society . based on tri ##gia ##ni ’ s 2000

best - selling novel of the same name , the story is set in the actual virginia town of big stone

gap circa 1970s . the film had its world premiere at the virginia film festival on november 6

, 2014 .

Cell #2

Control: the director of the romantic comedy " big stone gap " is based in what new york city ?
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Read: < t > adrian ##a tri ##gia ##ni < / t > adrian ##a tri ##gia ##ni is an italian american best

- selling author of sixteen books , television writer , film director , and entrepreneur based in

greenwich village , new york city . tri ##gia ##ni has published a novel a year since 2000 .

C.6 Maps for Question 5abd94525542992ac4f382d2

Question ID 5abd94525542992ac4f382d2

Cell #1

Control: 2014 s / s is the debut album of a south korean boy group that was formed by who ?

Read: < t > 2014 s / s < / t > 2014 s / s is the debut album of south korean group winner . it

was released on august 12 , 2014 by the group ’ s record label , y ##g entertainment . the

members were credited for writing the lyrics and composing the majority of the album ’ s

songs .

Cell #2

Control: 2014 s / s is the debut album of a south korean boy group that was formed by who ?

Read: < t > winner ( band ) < / t > winner ( hangul : [UNK] ) , often stylized as winner , is a south

korean boy group formed in 2013 by y ##g entertainment and debuted in 2014 . it currently

consists of four members , jin ##wo ##o , se ##ung ##ho ##on , min ##o and se ##ung ##yo

##on . originally a five - piece group with tae ##hy ##un , who later departed from the group

in november 2016 .
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C.7 Maps for Question 5a85b2d95542997b5ce40028

Question ID 5a85b2d95542997b5ce40028

Cell #1

Control: who was known by his stage name ala ##din and helped organizations improve their

performance as a consultant ?

Read: < t > management consulting < / t > management consulting is the practice of helping

organizations to improve their performance , operating primarily through the analysis

of existing organizational problems and the development of plans for improvement .

organizations may draw upon the services of management consultants for a number of

reasons , including gaining external ( and presumably objective ) advice and access to the

consultants ’ specialized expertise .

Cell #2

Control: who was known by his stage name ala ##din and helped organizations improve their

performance as a consultant ?

Read: < t > ee ##nas ##ul fate ##h < / t > ee ##nas ##ul fate ##h ( bengali : [UNK] [UNK] ; born

3 april 1959 ) , also known by his stage name ala ##din , is a bangladeshi - british cultural

practitioner , magician , live artist and former international management consultant .

C.8 Maps for Question 5a87ab905542996e4f3088c1

Question ID 5a87ab905542996e4f3088c1

Cell #1

Control: the arena where the lewis ##ton maine ##iac ##s played their home games can seat how

many people ?
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Read: < t > lewis ##ton maine ##iac ##s < / t > the lewis ##ton maine ##iac ##s were a junior

ice hockey team of the quebec major junior hockey league based in lewis ##ton , maine . the

team played its home games at the and ##ros ##co ##gg ##in bank coli ##see . they were the

second q ##m ##jhl team in the united states , and the only one to play a full season . they

won the president ’ s cup in 2007 .

Cell #2

Control: the arena where the lewis ##ton maine ##iac ##s played their home games can seat how

many people ?

Read: < t > and ##ros ##co ##gg ##in bank coli ##see < / t > the and ##ros ##co ##gg ##in

bank coli ##see ( formerly central maine civic center and lewis ##ton coli ##see ) is a 4 ,

000 capacity ( 3 , 67 ##7 seated ) multi - purpose arena , in lewis ##ton , maine , that opened

in 1958 . in 1965 it was the location of the world heavyweight title fight during which one

of the most famous sports photographs of the century was taken of mu ##ham ##med ali

standing over sonny list ##on .
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